• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Специалитет 2021/2022

Дифференциальные уравнения

Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Компьютерная безопасность)
Когда читается: 3-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Специальность: 10.05.01. Компьютерная безопасность
Язык: русский
Кредиты: 4
Контактные часы: 48

Программа дисциплины

Аннотация

Целями освоения дисциплины «Дифференциальные уравнения» являются • приобретение знаний и умений в соответствии с государственным образовательным стандартом, содействие фундаментализации образования, формирование естественнонаучного мировоззрения и развитие системного мышления; • ознакомление студентов с основными понятиями и методами решения дифферен-циальных уравнений; • приобретение навыков использования пакета «Математика» для аналитического и численного решения дифференциальных уравнений. Дисциплина реализуется в он-лайн формате
Цель освоения дисциплины

Цель освоения дисциплины

  • Приобретение знаний и умений в соответствии с государственным образовательным стандартом, содействие фундаментализации образования, формирование естественнонаучного мировоззрения и развитие системного мышления
  • Ознакомление студентов с основными понятиями и методами решения дифференциальных уравнений
  • Приобретение навыков использования пакета «Математика» для аналитического и численного решения дифференциальных уравнений
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать основные методы аналитического решения дифференциальных уравнений и систем дифференциальных уравнений
  • Знать основные методы символьного и численного решения дифференциальных уравнений и систем дифференциальных уравнений в пакете Mathematica 10
  • Иметь опыт анализа решения дифференциальных уравнений с помощью пакета Mathematica
  • Иметь опыт применения стандартных алгоритмов нахождения решений типовых дифференциальных уравнений
  • Уметь использовать аппарат дифференциальных уравнений в процессе проведения самостоятельных научно-практических исследований
  • Уметь использовать имеющиеся возможности пакета Mathematica 10 для анализа дифференциальных уравнений
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Дифференциальные уравнения первого порядка
  • Дифференциальные уравнения n-го порядка
  • СЛДУ первого порядка. Краевые задачи.
  • Системы двух нелинейных ДУ первого порядка
  • Численное решение ДУ
  • Консервативные нелинейные системы двух ДУ первого порядка
  • Простейшие автоколебательные системы
  • Бифуркация фазового портрета
Элементы контроля

Элементы контроля

  • неблокирующий контрольная работа
    Письменная работа на 80 минут в 1-ом модуле.
  • неблокирующий домашняя работа
    На экзамене происходит защита домашней работы и при необходимости, ответы на вопросы, известные студентам заранее.
  • неблокирующий текущий контроль
  • неблокирующий экзамен
    На экзамене происходит защита домашней работы и при необходимости, ответы на вопросы, известные студентам заранее.
  • неблокирующий контрольная работа
    Письменная работа на 80 минут в 1-ом модуле.
  • неблокирующий домашняя работа
    На экзамене происходит защита домашней работы и при необходимости, ответы на вопросы, известные студентам заранее.
  • неблокирующий текущий контроль
  • неблокирующий экзамен
    На экзамене происходит защита домашней работы и при необходимости, ответы на вопросы, известные студентам заранее.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 2 модуль
    0.5 * текущий контроль + 0.35 * контрольная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Арнольд, В. И. Обыкновенные дифференциальные уравнения : учебник / В. И. Арнольд. — Москва : МЦНМО, 2012. — 341 с. — ISBN 978-5-4439-2007-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56392 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Бугров Я. С., Никольский С. М. - ВЫСШАЯ МАТЕМАТИКА В 3 Т. ТОМ 3. В 2 КН. КНИГА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. КРАТНЫЕ ИНТЕГРАЛЫ 7-е изд. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2019 - 288с. - ISBN: 978-5-9916-8643-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/vysshaya-matematika-v-3-t-tom-3-v-2-kn-kniga-1-differencialnye-uravneniya-kratnye-integraly-437221
  • Обыкновенные дифференциальные уравнения, Федорюк, М. В., 2003

Рекомендуемая дополнительная литература

  • Mathematica : практ. курс с примерами решения прикладных задач, Васильев, А. Н., 2008

Авторы

  • Четвериков Виктор Михайлович