Бакалавриат
2021/2022




Интеллектуальные методы анализа информации
Статус:
Курс по выбору (Экономика и статистика)
Направление:
38.03.01. Экономика
Кто читает:
Департамент статистики и анализа данных
Где читается:
Факультет экономических наук
Когда читается:
4-й курс, 3 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
3
Контактные часы:
34
Программа дисциплины
Аннотация
Курс состоит из двух частей. Первая, теоретическая часть, посвящена изучению информационных технологий, обычно представляемых в научной литературе под общим названием «Data Mining»: методы многомерной статистики и кластерного анализа, нейросетевые методы, методы нечеткой логики, генетические алгоритмы, деревья решений, экспертные системы. Во второй, практической части, изучается несколько программных продуктов в объеме, достаточном для самостоятельного решения несложных задач моделирования динамических систем, построения искусственных нейронных сетей, визуализации и кластерного анализа многомерных данных методом самоорганизующихся карт Кохонена.
Цель освоения дисциплины
- дать студентам теоретические сведения о назначении, разработке, внедрении и сопровождении систем информационного и аналитического обеспечения принятия решений, основанных на нейронных сетях
- дать студентам практические навыки внедрения и практического применении интеллектуальных систем
Планируемые результаты обучения
- Студент должен знать и владеть основными понятиями нейронных сетей, их устройством, применением в задачах классификации и анализе временных рядов. Уметь строить динамические модели и самоорганизующиеся карты
- Студент должен знать основные принципы реализации, особенности использования, преимущества и недостатки метода
- Студент должен знать особенности статистических методов анализа данных
- Студент должен знать: основные принципы применения нечеткой логики; преимущества и недостатки метода нечеткой логики в сравнении с классическими методами статистической обработки и анализа информации; описание метода на основе деревьев решений; структура дерева решений; задачи деревьев решений; области применения деревьев решений; преимущества и недостатки метода
Содержание учебной дисциплины
- Статистические методы анализа данных
- Генетические алгоритмы
- Нейронные сети
- Нечеткая логика и деревья решений
Промежуточная аттестация
- 2021/2022 учебный год 3 модуль0.2 * Оптимизация + 0.2 * Моделирование + 0.2 * Постановка задачи + 0.4 * Активность
Список литературы
Рекомендуемая основная литература
- Ростовцев В.С. - Искусственные нейронные сети: учебник - Издательство "Лань" - 2019 - 216с. - ISBN: 978-5-8114-3768-9 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/122180
Рекомендуемая дополнительная литература
- Макроэкономика : учебник, Бланшар, О., 2010