• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2021/2022

Функциональный анализ

Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Прикладная математика)
Направление: 01.03.04. Прикладная математика
Когда читается: 3-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 56

Программа дисциплины

Аннотация

Настоящая дисциплина относится к циклу базовых дисциплин профессионального цикла. Изучение данной дисциплины базируется на следующих дисциплинах: «Математический анализ», «Алгебра», «Линейная алгебра и аналитическая геометрия», «Дифференциальные уравнения». Для освоения учебной дисциплины, студенты должны владеть следующими знаниями и компетенциями: знаниями основных определений и теорем перечисленных выше дисциплин, навыками решения типовых задач этих дисциплин. Основные положения дисциплины могут быть использованы в дальнейшем при изучении следующих дисциплин: «Уравнения математической физики», «Методы оптимизации», «Теория вероятностей и математическая статистика», «Численные методы», «Теория управления», «Теория случайных процессов».
Цель освоения дисциплины

Цель освоения дисциплины

  • Ознакомление студентов с основами теории функций и функционального анализа
  • Знакомство с некоторыми прикладными задачами дисциплины
Планируемые результаты обучения

Планируемые результаты обучения

  • В результате освоения дисциплины студент должен: • уметь применять методы дисциплины для решения задач, возникающих в дисциплинах, использующих соответствующие методы; • приобрести опыт применения современного инструментария дисциплины.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Гильбертовы пространства
  • Компактность в метрических пространствах
  • Линейные функционалы и операторы
Элементы контроля

Элементы контроля

  • неблокирующий Коллоквиум
    Оценки ниже 4-х баллов округляются в меньшую сторону, остальные оценки учитываются без округления.
  • неблокирующий Промежуточная аттестация
  • неблокирующий Итоговая аттестация
  • неблокирующий Контрольная работа 2
  • неблокирующий Контрольная работа 1
  • неблокирующий Итоговая оценка за экзамен 2-го курса
  • неблокирующий Промежуточная аттестация
  • неблокирующий Итоговая аттестация
  • неблокирующий Контрольная
    Может быть разбита на 2 части
  • неблокирующий Коллоквиум 2
  • неблокирующий Коллоквиум 1
  • неблокирующий Экзамен 2 курса
Промежуточная аттестация

Промежуточная аттестация

  • 2020/2021 учебный год 4 модуль
    0.2 * Контрольная + 0.5 * Экзамен 2 курса + 0.1 * Коллоквиум 1 + 0.2 * Коллоквиум 2
  • 2021/2022 учебный год 2 модуль
    0.1 * Контрольная работа 1 + 0.5 * Итоговая аттестация + 0.15 * Коллоквиум + 0.1 * Контрольная работа 2 + 0.15 * Итоговая оценка за экзамен 2-го курса
Список литературы

Список литературы

Рекомендуемая основная литература

  • Задачи по функциональному анализу, [учебное пособие], МГУ им. М. В. Ломоносова, мех.-мат. фак., нов. изд., 334 с., Бородин, П. А., Савчук, А. М., Шейпак, И. А., 2017
  • Элементы теории функций и функционального анализа : учебник для вузов, Колмогоров, А. Н., 1989
  • Элементы теории функций и функционального анализа, Колмогоров, А. Н., 2006

Рекомендуемая дополнительная литература

  • Колмогоров, А. Н. Элементы теории функций и функционального анализа : учебное пособие / А. Н. Колмогоров, С. В. Фомин. — 7-е изд. — Москва : ФИЗМАТЛИТ, 2009. — 572 с. — ISBN 978-5-9221-0266-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2206 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Методы современной математической физики. Т. 1: Функциональный анализ, Рид, М., 1977

Авторы

  • Парусникова Анастасия Владимировна