Бакалавриат
2020/2021
Эконометрика
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Экономика и статистика)
Направление:
38.03.01. Экономика
Кто читает:
Департамент статистики и анализа данных
Где читается:
Факультет экономических наук
Когда читается:
3-й курс, 3, 4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Копнова Елена Дмитриевна
Язык:
русский
Кредиты:
6
Контактные часы:
80
Программа дисциплины
Аннотация
Курс эконометрики предназначен для формирования у студентов научного представления о методах, моделях и приемах количественного анализа законов экономической теории с использованием математико-статистического инструментария. Изучение дисциплины предполагает получение знаний основных принципов анализа статистических зависимостей между показателями социально-экономических явлений и процессов, а также навыков моделирования этих зависимостей с использованием статистических данных и современного компьютерного программного обеспечения. В основу дисциплины положены базовые принципы теории вероятностей и математической статистики, а также экономической статистики. Основные положения курса должны будут использованы студентами в их научно-исследовательской деятельности, а также при изучении других курсов, связанных со статистическим моделированием социально-экономических систем.
Цель освоения дисциплины
- Целью освоения эконометрики является формирование у студентов научного представления о методах, моделях и приемах, позволяющих получать количественные выражения закономерностям экономической теории на базе экономической статистики с использованием математико-статистического инструментария.
Планируемые результаты обучения
- Знать основные принципы и уметь использовать классическую линейную модель множественной регрессии
- Знать и уметь решать основные проблемы спецификации регрессионной модели
- Знать основные принципы и уметь работать с обобщенной линейной моделью множественной регрессии
- Знать основные принципы проблемы эндогенности в регрессионном анализе и уметь работать с моделями со стохастическими регрессорами
- Знать основные принципы моделирования с использованием систем регрессионных уравнений и уметь с ними работать
- Знать основные принципы и уметь применять метод максимального правдоподобия (ММП) в эконометрическом анализе
- Знать основные принципы моделирования регрессионных зависимостей с дискретными и дискретно-непрерывными зависимыми переменными и уметь с ними работать
- Знать основные принципы регрессионного анализа панельных данных и уметь с ними работать
- Знать основные принципы эконометрических моделей и уметь работать с ними
Содержание учебной дисциплины
- Тема 1. Основные понятия и определения, цель и задачи эконометрики. Особенности эконометрических моделейПредмет и содержание курса «Эконометрика». Задачи эконометрики в области социально-экономических исследований. Понятие эконометрической модели. Основные этапы эконометриче-ского моделирования. Информационные технологии в эконометрических исследованиях. Класси-фикация переменных в эконометрических моделях. Понятия спецификации и идентификации модели. Классификация эконометрических моделей. Примеры эконометрических моделей
- Тема 2. Классическая линейная модель множественной регрессии.Основные понятия и задачи регрессионного анализа. Двумерная линейная регрессионная модель. КЛММР в матричном виде. МНК-оценки коэффициентов регрессии. Теорема Гаусса-Маркова. Оценка дисперсии ошибок. Оценка ковариационной матрицы оценок коэффициентов регрессии. Дисперсионный анализ регрессионной модели. Коэффициент детерминации и его свойства. Скор-ректированный коэффициент детерминации. Оценка значимости уравнения в целом, оценка значи-мости отдельных коэффициентов регрессии. Построение интервальных оценок параметров регрес-сионной модели. Проверка гипотезы о наличии линейных ограничений на коэффициенты регрессии. Оценка эластичности объясняемой переменной в регрессионной модели. Прогнозные оценки значений зависимой переменной.
- Тема 3. Проблемы спецификации регрессионных моделейИстинность регрессоров: лишние регрессоры, недостающие регрессоры. Мультиколлинеарность регрессоров: причины, последствия для моделирования, измерение (VIFы, подход Фаррара-Глаубера), методы преодоления (гребневая регрессия, пошаговые алгоритмы исключения и вклю-чения факторов уравнения регрессии, регрессия на главных компонентах). Нелинейная регрессия. Подход Бокса-Кокса. RESET-тест на нелинейность связи. Выбор оптимальной модели: сравнение невложенных моделей (J-тест, PE-тест), псевдо-R2, информационные критерии. Неоднородные данные: типологическая регрессия, фиктивные переменные, тест Чоу. Проверка предпосылок ошибки регрессии: соотношение свойств ошибок и остатков регрессии, проверка гипотезы о нор-мальном распределении остатков модели.
- Тема 4. Обобщенная линейная модель множественной регрессии (ОЛММР)Обобщенная линейная модель множественной регрессии (ОЛММР). Проблемы МНК-оценок. Теорема Айткена. Обобщенный метод наименьших квадратов. Чисто гетероскедастичная ОЛММР. Причины и последствия гетероскедастичности для моделирования. Проверка гипотезы об отсутствии гетероскедастичности: критерии Бреуша-Пагана, Уайта, Голдфельда-Квандта, Бартлетта. Взвешенный МНК, как частный случай ОМНК. ОЛММР с автокоррелированными остатками. Причины автокорреляции регрессионных остатков. Автокорреляционная функция остатков. ОЛММР с авторегрессионными ошибками первого порядка. Проверка гипотез об от-сутствии автокорреляции регрессионных остатков: критерии Дарбина-Уотсона, Бреуша-Годфри, Бокса-Пирса, Льюинга-Бокса. Оценка параметров модели с автокоррелированными остатками: процедура Кохрейна-Оркатта. Коррекция стандартных ошибок МНК-оценок: поправки Уайта, Ньюи-Веста.
- Тема 5. Стохастические регрессорыСвойства МНК-оценок в линейных моделях регрессии со стохастическими регрессорами. Пробле-ма эндогенности. Метод инструментальных переменных (ИП). Двухшаговый МНК. Поняте об обобщенном методе моментов. Выбор ИП: тесты Хаусмана, Дарбина-Ву-Хаусмана. J-тест на свер-хидентифицируемость соотношений.
- Тема 6. Системы регрессионных уравненийКлассификация переменных в системах регрессионных уравнений. Виды систем: системы внешне не связанных уравнений, рекурсивные системы, системы одновременных уравнений (СОУ). Формы систем регрессионных уравнений: структурная и приведенная форма. Необходимые и достаточные условия идентифицируемости СОУ. Методы идентификации систем регрессионных уравнений: МНК, косвенный МНК, двухшаговый МНК, трехшаговый МНК – алгоритмы и свойства оценок.
- Тема 7. Метод максимального правдоподобия (ММП) в регрессионном анализеСвойства ММП-оценок. ММП-оценки параметров КЛММР и ОЛММР. Применение ММП для про-верки гипотезы о линейном ограничении на параметры модели: тесты Вальда, LM-тест, LR-тест.
- Тема 8. Модели с дискретными и дискретно-непрерывными зависимыми переменнымиЛинейная модель вероятности. Модели бинарного выбора. Модели множественного выбора. Модели с цензурированными и урезанными выборками.
- Тема 9. Модели, оцениваемые по панельным даннымПанельные данные. Модели с фиксированными эффектами. Модели со случайными эффектами. Динамические модели, оцениваемые по панельным данным. Модели с дискретной зависимой пе-ременной, оцениваемые по панельным данным.
Элементы контроля
- Активность на семинарах
- ТДЗТДЗ (Текущее Домашнее Задание) по каждой теме нацелено на ее предварительное изучение в ходе подготовки студентов к семинару. Это задание высылается студентам до семинара после лекции по соответствующей теме.
- СР1СР1 и СР2 (Самостоятельные Работы 1 и 2) выполняются на компьютерах. В итоге студенты представляют на проверку текстовый отчет и расчетный файл. Если СР1 не сдается в срок без уважительной причины, то она не подлежит пересдаче.
- СР2Если СР2 не сдается в срок без уважительной причины, то она не подлежит пересдаче.