Магистратура
2020/2021
Социальные сети
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Компьютерная лингвистика)
Направление:
45.04.03. Фундаментальная и прикладная лингвистика
Кто читает:
Школа лингвистики
Где читается:
Факультет гуманитарных наук
Когда читается:
2-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Прогр. обучения:
Компьютерная лингвистика
Язык:
английский
Кредиты:
3
Контактные часы:
32
Course Syllabus
Abstract
The course "Social Networks" introduces students to the new interdisciplinary field of research. Emerged in sociology, the theory of social networks in recent years, has attracted considerable interest of economists, mathematicians, physicists, experts in data analysis, computer engineers. Initially, researches focused on the study of social networks, i.e. sets of links connecting the social actors in accordance with their interaction. Nowadays, the study of actors’ relations includes economic, financial, transport, computer, language and many other networks. The course examines the methods of analyzing the structure of networks, model of their emergence and development, and the processes occurring in networks.
Learning Objectives
- The main objective of the course «Social Networks» – to provide students with the theoretical foundations of the theory of social networks and the development of practical knowledge and skills for network science.
Expected Learning Outcomes
- Understands the fundamental principles of social networking
- Knows the typical applied problems considered in models of complex networks
- Understands the capabilities and limitations of the existing network analysis methods
- Can apply the obtained knowledge to analyze real-world networks.
Course Contents
- Complex networksIntroduction to the theory of complex systems. Basic concepts in the theory of networks. Properties and network analysis metrics. The power-law distribution. Scale-invariant network (scale-free networks). Random graphs. Pareto distribution, normalization, moments Act Tsipfa.Graf rankfrequency diameter and clustering coefficients.
- Nodes metrics and link analysisMetrics and central nodes / Centrality metrics. The concepts of centrality and prestige. Model graphs. Degree centrality, closeness centrality, betweenness centrality, status / rank prestige (eigenvector centrality). Central network (sentralization). Analysis of bonds. PageRank algorithm. Stochastic matrices. Hubs and Authorities. HITS algorithm.
- Nodes metrics and link analysis (continuation)Networks and semantics. Networks and syntax. Networks and morphology. Networks and phonology. Networks and applied linguistics.
- Networks in theoretical linguisticsMetrics and central nodes / Centrality metrics. The concepts of centrality and prestige. Model graphs. Degree centrality, closeness centrality, betweenness centrality, status / rank prestige (eigenvector centrality). Central network (sentralization). Analysis of bonds. PageRank algorithm. Stochastic matrices. Hubs and Authorities. HITS algorithm.
Bibliography
Recommended Core Bibliography
- Newman, M. (2010). Networks: An Introduction. Oxford University Press, 2010
Recommended Additional Bibliography
- Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems (Vol. First edition). Sebastopol, CA: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1486117