• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2020/2021

Анализ изображений и текстов

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Промышленное программирование)
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: с онлайн-курсом
Преподаватели: Дудоров Сергей Александрович, Шпильман Алексей Александрович
Прогр. обучения: Промышленное программирование
Язык: русский
Кредиты: 3
Контактные часы: 60

Программа дисциплины

Аннотация

Данная дисциплина направлена на овладение навыками анализа изображений, сегментации изображений. Студенты получат представление об основных алгоритмах из области анализа изображений. Научатся проводить сегментацию и детектировать объекты на изображении используя методы компьютерного зрения и глубинного обучения. В результате освоения дисциплины студент должен:  знать алгоритмы сегментации и детекции объектов на изображении;  уметь проектировать генеративные нейронные сети для классификации изображений  владеть математическим аппаратом и инструментальными средствами, используемым при анализе изображений и видео.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Анализ изображений» является формирование у студентов теоретических знаний и практических навыков по основам анализа изображений и сегментации изображений.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знает основные используемые методы обработки изображений. Применяет современные методы анализа и сегментации изображений для решения практических задач. Владеет навыками реализации алгоритмов, использования и оптимизации библиотек анализа изображений.
  • Знает основные математические модели, используемые для анализа изображений в машинном обучении. Модифицирует используемые математические модели для конкретных задач. Владеет навыками применения различных математических задач для анализа изображений.
  • Знает основные этапы разработки и адаптации формальных математических моделей. Оценивает трудоемкость и время исполнения различных алгоритмов машинного обучения, применяемых для анализа изображений. Владеет навыками планирования решения задач, связанных с анализом изображений.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Обработка изображений
  • Объекты на изображении
  • Анализ изображений и отслеживание объектов
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание 1
  • неблокирующий Домашнее задание 2
  • неблокирующий Домашнее задание 3
  • блокирующий Устный экзамен
    Экзамен проводится на платформе Zoom. Экзамен проводится в устной форме (опрос по материалам курса). По просьбе преподавателя студент должен быть готов выполнить некоторые задания в письменном виде, после чего сфотографировать и выслать на почту преподавателю. К экзамену необходимо подключиться согласно расписанию, высланному преподавателем на корпоративные почты студентов накануне экзамена. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка платформы Zoom. Для участия в экзамене студент обязан: выбрать себе имя в Zoom совпадающее с его именем и фамилией, явиться на экзамен согласно точному расписанию, при ответе включить камеру и микрофон. Во время экзамена студентам запрещается выключать камеру. Ипользование конспектов или других справочных материалов допускается только с разрешения преподавателя. Кратковременным нарушением связи во время экзамена считается нарушение связи менее 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минут и более. При долговременном нарушении связи возможность продолжения студентом участие в экзамене определяется преподавателем. Процедура пересдачи подразумевает использование усложненных заданий.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.125 * Домашнее задание 1 + 0.125 * Домашнее задание 2 + 0.125 * Домашнее задание 3 + 0.625 * Устный экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Furht, B., Akar, E., & Andrews, W. A. (2018). Digital Image Processing: Practical Approach. Cham, Switzerland: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1881248

Рекомендуемая дополнительная литература

  • Wojciechowski, K. (2006). Computer Vision and Graphics : International Conference, ICCVG 2004, Warsaw, Poland, September 2004, Proceedings. Dordrecht: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=155987