Магистратура
2020/2021




Глубокое обучение
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Анализ больших данных в бизнесе, экономике и обществе)
Направление:
01.04.02. Прикладная математика и информатика
Кто читает:
Департамент информатики
Когда читается:
2-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Николенко Сергей Игоревич
Прогр. обучения:
Анализ больших данных в бизнесе, экономике и обществе
Язык:
русский
Кредиты:
6
Контактные часы:
64
Программа дисциплины
Аннотация
Discipline of choice. Deep learning is a popular area that uses neural networks of complex architecture. Such systems give better results in areas such as image and video processing, sound and text. The course will cover the main types of architectures and the principles of operation and training of deep neural networks and conduct practice in the above areas of application. As a result of mastering the discipline, the student must: Know the methods of building deep neural networks; Be able to apply deep learning to solve specific tasks; own a mathematical apparatus and algorithms for working with deep neural networks.
Цель освоения дисциплины
- The objectives of mastering the discipline "Deep Learning" are the formation of students' theoretical knowledge and practical skills on the basics of building large neural networks for deep learning.
Планируемые результаты обучения
- Knows optimization algorithms for deep neural networks based on various variations of gradient descent. Configures such algorithms based on the conditions of a specific task
- Knows the basic architecture of neural networks used to classify images. Modifies layers and various parameters to solve applied problems. It uses networks to solve the problems of image classification, image segmentation and video stream.
- He knows the general, general scientific and business vocabulary used in the field of deep learning. It receives from articles (including in English) information about the structure of the neural network and the features used to solve a specific problem. Describes, presents and analyzes the results of applying deep learning methods to solve applied problems.
- He knows the main types of tasks solved using deep learning. Develops architecture, implements, trains and optimizes the parameters of neural networks. It solves applied problems from various fields using deep learning.
Содержание учебной дисциплины
- Optimization and Regularization Algorithms
- Image Processing and Analysis
- Natural language processing, competitive and generative neural networks
- Hyperparameter optimization, reinforcement learning
Промежуточная аттестация
- Промежуточная аттестация (2 модуль)0.5 * Exam + 0.16 * Homework 1 + 0.17 * Homework 2 + 0.17 * Homework 3
Список литературы
Рекомендуемая основная литература
- Iba, H. (2018). Evolutionary Approach to Machine Learning and Deep Neural Networks : Neuro-Evolution and Gene Regulatory Networks. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1833749
Рекомендуемая дополнительная литература
- Taweh Beysolow II. (2017). Introduction to Deep Learning Using R. Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.spr.sprbok.978.1.4842.2734.3