Магистратура
2020/2021
Избранные разделы математики
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус:
Курс адаптационный (Суперкомпьютерное моделирование в науке и инженерии)
Направление:
01.04.04. Прикладная математика
Кто читает:
Департамент прикладной математики
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Артамонов Сергей Юрьевич
Прогр. обучения:
Суперкомпьютерное моделирование в науке и инженерии
Язык:
английский
Кредиты:
4
Контактные часы:
60
Course Syllabus
Abstract
This discipline belongs to the class of adaptation. The purpose of studying the discipline is to form students' basic knowledge in the field of Fourier analysis and the ability to apply fundamental principles to solve practical problems.
Learning Objectives
- As a result of studying the discipline, the student will know: 1. Fundamental provisions of selected sections of higher mathematics. 2. The main results of the theory of Hilbert spaces and Fourier analysis.
- be able to: 1. Use the main provisions of the selected sections of Fourier analysis for solving problems of mathematical physics. 2. Use the main provisions of selected sections of Fourier analysis for solving problems of approximation theory.
- have skills: 1. Solving model problems in selected sections of Fourier analysis and approximation theory. 2. Using the main provisions of the selected sections of Fourier analysis for solving problems of approximation theory.
Expected Learning Outcomes
- be able to: Use the main provisions of the selected sections of Fourier analysis for solving problems of mathematical physics. have skills: Solving model problems in selected sections of Fourier analysis and approximation theory.
- be able to: Use the main provisions of selected sections of Fourier analysis for solving problems of approximation theory. have skills: Using the main provisions of the selected sections of Fourier analysis for solving problems of approximation theory.
Course Contents
- Metric and normalized spaces. Continuous functions. Full spaces. The principle of compressing mappings and its application. Banach and Hilbert spaces. Examples: Lp spaces.
- Fourier series. Some problems of mathematical physics. Generalized functions and Fourier transform. Poisson summation formula. The main provisions of the theory of approximation.
Assessment Elements
- аудиторные занятия
- самостоятельные
- экзамен
- Контрольно-измерительные материалы
- аудиторные занятия
- самостоятельные
- экзамен
- Контрольно-измерительные материалы