Бакалавриат
2020/2021
Интеллектуальные информационные системы
Статус:
Курс обязательный (Бизнес-информатика)
Направление:
38.03.05. Бизнес-информатика
Кто читает:
Департамент бизнес-информатики
Где читается:
Высшая школа бизнеса
Когда читается:
3-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Язык:
русский
Кредиты:
4
Контактные часы:
40
Программа дисциплины
Аннотация
Целями освоения дисциплины является формирование у студентов комплекса теоретических знаний и методологических основ в области проведения анализа данных с использованием интеллектуальных систем обработки информации, а также практических навыков, необходимых для внедрения и практического использования таких систем. Задачи дисциплины: 1. Получить представление о современных подходах и процедурах, выполняемых с использованием интеллектуальных системах. 2. Познакомиться с основными методами интеллектуального анализа данных. 3. Изучить основные технологии построения алгоритмов анализа данных с использованием информационных систем на основе технологий прикладного искусственного интеллекта. 4. Выработать навыки использования современных информационных технологий и программных средств, реализующих алгоритмы интеллектуального анализа данных. Для изучения дисциплины студент должен: 1. знать основные понятия математического анализа, теории вероятностей и математической статистики, теоретических основ информатики, программирования; 2. владеть основным содержанием дисциплин микроэкономика, менеджмент, архитектура предприятия, теоретические основы информатики; 3. уметь использовать математические и инструментальные программные средства для решения задач анализа информации, создания электронных таблиц, отчётов и презентаций.
Цель освоения дисциплины
- Знать: место и роль интеллектуальных систем обработки данных в архитектуре предприятия; основные модели и технологии, основанные на обработке знаний в системах прикладного искусственного интеллекта, области и границы их применения
- Уметь: делать обоснованный выбор технологии искусственного интеллекта, наиболее подходящей для решения прикладной задачи; формулировать требования к характеристикам интеллектуальной системе; интерпретировать и синтезировать комплексные модели, построенные на основе технологий прикладного искусственного интеллекта
- Владеть: основными классами современных и перспективных интеллектуальных систем, входящих в ИТ-инфраструктуру предприятия.
Планируемые результаты обучения
- Знать структуру искусственных нейронных сетей
- Уметь проводить анализ нейронной сети по её структурному графу
- Уметь формировать граф нейронной сети
- Владеть методами обучения нейронных сетей на основе обратного распространения ошибки
- Знать основные задачи и алгоритмы кластерного анализа
- Знать основные этапы алгоритма К-средних
- Уметь проводить кластеризацию объектов, описываемых числовыми признаками
- Владеть методом К-средних для проведения кластерного анализа
- Знать основные алгоритмы построения деревьев решений
- Уметь строить дерево решения с использованием алгоритма ID3
- Владеть методами анализа качества построенных деревьев решений
- Знать основные визуальные средства представления данных
- Уметь формировать визуальные представления статических данных
- Уметь формировать визуальные представления временных рядов
- Уметь формировать визуальные представления финансовых данных
- Владеть методами обнаружения ошибок в визуальных представлениях
- Знать основные модели нечёткой логики
- Уметь синтезировать представления предметной области на основе моделей нечёткой логики
- Владеть основными операциями нечёткой арифметики
- Знать основные программные средства разведочного анализа
- Уметь проводить сравнение функциональных возможностей программных средств разведочного анализа данных
- Владеть программными средствами (минимум одним) разведочного анализа данных
- Знать основные задачи разведочного анализа данных
- Знать основные модели описания и представления данных
- Уметь выбирать шкалу представления данных
- Уметь формулировать задачу разведочного анализа
- Знать основные исторические и современные подходы анализа данных
- Уметь использовать методы формальной логики для представления предметной области
- Знать основные методы, на основе которых проводится анализ данных
Содержание учебной дисциплины
- Основные понятия, назначение и место интеллектуальных систем в ИТ-инфраструктуре предприятияКраткая историческая справка. Основные понятия и определения. Сравнительная классификация задач, решаемых человеком и искусственным интеллектом. Классификация интеллектуальных систем. Эволюция информационных систем. Предмет и содержание курса. Связь курса с другими дисциплинами. Обзор моделей представления знания и предметной области. Интеллектуальные методы обработки информации. Проблемы управления знаниями предприятия. Обзор основных технологий реализации интеллектуальных методов в прикладных информационных системах искусственного интеллекта.
- Основные задачи, модели и методы разведочного анализаОсновные аналитические модели. Скалярные и многомерные модели. Статические и динамические модели. Детерминированные, стохастические и хаотические модели. Линейные и нелинейные модели. Методы обучения интеллектуальных систем: обучение с учителем, обучение с подкреплением, самоорганизация. Режимы обучения: пакетный, интерактивный и смешанный.
- Программные средства разведочного анализаПрограммные средства, реализующие интеллектуальные методы обработки. Сравнительный анализ программных продуктов, на примере продуктов: Microsoft Excel, IBM SPSS, Mathworks Matlab. Визуализация и подготовка графических материалов для отчётов.
- Использование нечётких множеств и отношений для представления знаний в интеллектуальных системахПонятие чётких и нечётких объектов: множеств, чисел и отношений. Нечёткие множества. Функции принадлежности. Операции над нечёткими множествами. Нечёткие числа, операции над нечёткими числами. Операции фуззификации и деффузификации. Нечёткие отношения. Правила нечеткого вывода. Системы нечёткого вывода, на основе алгоритма Мамдами. Системы нечёткого вывода на основе алгоритма Сугено. Практический синтез простых систем нечёткого вывода на основе алгоритмов Мамдами и Сугено.
- Визуальный анализ данныхВизуализация результатов статистической обработки. Визуализация временных рядов. Интерполяционные техники. Визуализация финансовых рядов. Графики типа «японские свечи» и OHLC. Визуализация многомерных данных. Основные ошибки визуализации.
- Деревья классификации и регрессииДеревья принятия решений: деревья классификации и деревья регрессии. Меры неопределенности: энтропия, индекс Джини, вероятность ошибочной классификации. Алгоритмы построения деревьев решения: ID3/C4.5, CART. Особенности построения деревьев регрессии. Жадные алгоритмы. Технологии улучшения деревьев методом обрезки. Кросс-валидация применительно к деревьям решений. Практические реализации методов построения дерева классификация с использованием программных средств.
- Основы кластерного анализаКоличественные меры расстояний между объектами в признаковом пространстве. Кластеризация методом ближайшего соседа. Иерархическая кластеризация. Анализ алгоритма кластеризации методом K-средних. Модификации алгоритма. Предварительный выбор центров кластеров. Алгоритм K-медиан. Оценка качества классификатора. Силуэты. Семантические и информационные критерии выбора количества кластеров.
- Интеллектуальные методы на основе искусственных нейронных сетейИскусственная нейронная сеть, как аналог биологической структуры. Модель нейрона МакКалока-Питтса. Структурные элементы нейронной сети. Модель персептрона Розенблатта. Модель многослойного персептрона. Модель нейронной сети на основе радиально-базисных функций. Обучение с подкреплением. Самообучающиеся сети. Модель самоорганизующихся карт Кохонена. Обучение нейронной сети. Обучение с учителем и самообучение. Процедура обратного распространения ошибки. Методы обучения первого порядка: градиентный спуск и его модификации. Методы обучения второго порядка. Практическое применение нейронных сетей для решения задач аппроксимации и классификации.
Элементы контроля
- ЭкзаменЭкзамен проводится с асинхронным прокторингом на платформе StartExam. Подробный порядок проведения в прикреплённом файле.
- Контрольная работа
- Аудиторная работа
- Проект
Промежуточная аттестация
- Промежуточная аттестация (2 модуль)0.2 * Аудиторная работа + 0.25 * Контрольная работа + 0.25 * Проект + 0.3 * Экзамен
Список литературы
Рекомендуемая основная литература
- Анализ данных в MS Excel : основные сведения о MS Excel, статистические таблицы и графики, статистические функции, пакет анализа (анализ данных) : учеб. пособие для вузов, Мхитарян, В. С., 2018
- Горбаченко В. И., Ахметов Б. С., Кузнецова О. Ю. - ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ: НЕЧЕТКИЕ СИСТЕМЫ И СЕТИ 2-е изд., испр. и доп. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 105с. - ISBN: 978-5-534-08359-0 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/intellektualnye-sistemy-nechetkie-sistemy-i-seti-444125
- Груздев А.В. - Прогнозное моделирование в IBM SPSS Statistics, R и Python: метод деревьев решений и случайный лес - Издательство "ДМК Пресс" - 2018 - 642с. - ISBN: 978-5-97060-539-4 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/123700
- Красавин А. В., Жумагулов Я. В. - КОМПЬЮТЕРНЫЙ ПРАКТИКУМ В СРЕДЕ MATLAB 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 277с. - ISBN: 978-5-534-08509-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/kompyuternyy-praktikum-v-srede-matlab-442328
- Под ред. Мхитаряна В.С. - АНАЛИЗ ДАННЫХ. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2019 - 490с. - ISBN: 978-5-534-00616-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/analiz-dannyh-432178
- Ростовцев В.С. - Искусственные нейронные сети: учебник - Издательство "Лань" - 2019 - 216с. - ISBN: 978-5-8114-3768-9 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/122180
- Флах П. - Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных - Издательство "ДМК Пресс" - 2015 - 400с. - ISBN: 978-5-97060-273-7 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/69955
Рекомендуемая дополнительная литература
- Барский А.Б. - Введение в нейронные сети - Национальный Открытый Университет "ИНТУИТ" - 2016 - 358с. - ISBN: - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/100684
- Барский А.Б. - Логические нейронные сети - Национальный Открытый Университет "ИНТУИТ" - 2016 - 492с. - ISBN: 978-5-94774-646-4 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/100630
- Введение в анализ данных : учебник и практикум для вузов, Миркин, Б. Г., 2015
- Гисин В.Б., Волкова Е.С. - Нечеткие множества и мягкие вычисления в экономике и финансах (Бакалавриат). Учебное пособие - КноРус - 2019 - 155с. - ISBN: 978-5-406-06705-5 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/930521
- Казанский А. А. - ПРИКЛАДНОЕ ПРОГРАММИРОВАНИЕ НА EXCEL 2019 2-е изд., пер. и доп. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 171с. - ISBN: 978-5-534-12022-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/prikladnoe-programmirovanie-na-excel-2019-446669
- Калинина В.Н., Соловьев В.И. - Анализ данных. Компьютерный практикум (для бакалавров). Учебное пособие - КноРус - 2017 - 166с. - ISBN: 978-5-406-04895-5 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/929386
- Соловьев В.И. - Анализ данных в экономике: Теория вероятностей, прикладная статистика, обработка и анализ данных в Microsoft Excel. (Бакалавриат) - КноРус - 2019 - 497с. - ISBN: 978-5-406-06940-0 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/930826
- Федоров Д. Ю. - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ВЫСОКОГО УРОВНЯ PYTHON 2-е изд. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 161с. - ISBN: 978-5-534-11961-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/programmirovanie-na-yazyke-vysokogo-urovnya-python-446505