Бакалавриат
2020/2021
Математика. Лиценциат
Статус:
Курс обязательный (Математика)
Направление:
01.03.01. Математика
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
4-й курс, 1 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Богачев Владимир Игоревич,
Вологодский Вадим Александрович,
Вьюгин Илья Владимирович,
Львовский Сергей Михайлович,
Побережный Владимир Андреевич,
Пятов Павел Николаевич,
Сапонов Павел Алексеевич,
Скопенков Михаил Борисович,
Тихомиров Александр Сергеевич,
Фейгин Евгений Борисович,
Чепыжов Владимир Викторович,
Шапошников Станислав Валерьевич,
Шехтман Валентин Борисович
Язык:
русский
Кредиты:
3
Контактные часы:
30
Программа дисциплины
Аннотация
Целями освоения дисциплины «Математика. Лиценциат» являются систематизация и закрепление у студентов фундаментальных знаний по основным обязательным математиче-ским дисциплинам, изучаемых в рамках данной образовательной программы (математический анализ, алгебра, геометрия, дискретная математика, дифференциальные уравнения, топология, теория функций комплексного переменного, теория вероятностей).
Цель освоения дисциплины
- Систематизация и закрепление у студентов фундаментальных знаний по основным обязательным математическим дисциплинам.
Планируемые результаты обучения
- В результате освоения дисциплины студент должен углубить и систематизировать имеющиеся знания ключевых понятий и результатов основных обязательных математических курсов и имеющиеся между ними взаимосвязи.
Содержание учебной дисциплины
- Элементы математического анализаЧисловые последовательности, пределы и предельные точки, критерий Коши сходимо-сти последовательности. Предел функции, непрерывность, теорема о промежуточном значении непрерывной функции, равномерная непрерывность непрерывной функции на отрезке. Сходимость числовых рядов. Свойства абсолютно сходящихся рядов (сходимость абсо-лютно сходящегося ряда, перестановка членов). Признаки сходимости Д’Аламбера и Коши. Условно сходящиеся ряды. Примеры условно сходящихся рядов. Дифференцируемые функции одного переменного. Необходимое условие экстремума дифференцируемой функции. Теорема Ролля. Теорема Лагранжа о конечном прираще-нии. Частные производные функции нескольких переменных. Производная (дифференциал) отображения из Rm в Rn. Теорема о производной сложной функции. Теорема о неявной функции для отображения из Rm в Rn. Теорема об обратной функции. Производная неявной и обратной функции. Интеграл Римана функции на отрезке и его основные свойства. Формула Ньютона—Лейбница и существование первообразной для непрерывной функции. Формула Тейлора для функции одного переменного. Формы остаточного члена. Экстремумы и выпуклость функций одного переменного. Исследование функции на экстремумы и выпуклость с помощью производных. Экстремумы функций нескольких переменных, условные экстремумы, множители Ла-гранжа. Интеграл Римана по n-мерному промежутку. Сведение кратного интеграла от непре-рывной функции к повторному. Криволинейные интегралы. Вычисление длин кривых и работы силы по криволиней-ному пути. Формула Грина. Конструкция интеграла Лебега на пространстве с конечной σ-аддитивной мерой. Функциональные последовательности и ряды, равномерная сходимость, непрерывность предела равномерно сходящейся последовательности непрерывных функций. Несобственные интегралы, признаки сходимости несобственных интегралов.
- Элементы алгебры и геометрии (обзор понятий и результатов)Аффинные пространства, аффинные отображения. Задание аффинного отображения n-мерного аффинного пространства образами n + 1 точки. Проективные пространства, проективные отображения. Задание проективного отобра-жения n-мерного проективного пространства образами n + 2 точек. Кривые второго порядка в R2 и C2, их аффинная и проективная классификации. Векторные пространства и линейные отображения, базисы, размерность, теорема о ран-ге матрицы. Определитель матрицы и его свойства. Разложение по строке и столбцу. Определитель произведения матриц. Решение системы линейных уравнений методом Гаусса. Формулы Крамера. Характеристический и минимальный многочлены линейного оператора, теорема Га-мильтона—Кэли. Корневые подпространства линейного оператора, жорданова нормальная форма. Квадратичные и билинейные формы, положительная определенность, закон инерции. Евклидовы линейные пространства. Разложение евклидова пространства в прямую сумму подпространства и его ортогонального дополнения. Ортогонализация Грама—Шмидта. Вещественные самосопряженные операторы, их диагонализуемость. Приведение квад-ратичной формы к главным осям. Группы, подгруппы, смежные классы, формула Лагранжа для числа смежных классов. Гомоморфизмы групп, нормальные подгруппы, факторгруппы. Теорема о гомоморфиз-мах групп. Классификация конечнопорожденных абелевых групп. Свободные абелевы группы конечного ранга и их подгруппы. Коммутативные кольца. Примеры колец. Кольца вычетов. Малая теорема Ферма. Евклидовы кольца. Примеры. Неприводимые элементы, делимость. Наибольший общий делитель. Факториальность евклидовых колец. Конечные поля. Примеры. Цикличность мультипликативной группы конечного поля.
- Дискретная математика (обзор понятий и результатов)Сочетания, сочетания с повторениями, перестановки, биномиальные коэффициенты. Тождества с биномиальными коэффициентами. Производящие функции. Линейные рекуррентные соотношения и рациональные произ-водящие функции. Формула Бине для чисел Фибоначчи.
- Элементы теории дифференциальных уравнений (обзор понятий и результатов)Понятие обыкновенного дифференциального уравнения и его решения. Задача Коши и теорема о существовании и единственности ее решения. Приближение решения задачи Коши итерациями Пикара. Методы решения дифференциальных уравнений: решение уравнений с разделяющимися переменными, метод вариации постоянных для линейных неоднородных уравнения первого порядка, однородные уравнения. Решение обыкновенных дифференциальных линейных однородных и неоднородных уравнений n-го порядка и линейных систем первого порядка с постоянными коэффици-ентами. Квазимногочлены. Матричная экспонента и ее применение.
- Теория функций комплексного переменного (обзор понятий и результатов)Комплексная производная, голоморфные функции, условия Коши—Римана. Примеры голоморфных функций. Голоморфность элементарных функций. Теорема Коши об интеграле голоморфной функции по замкнутому контуру. Интеграль-ная формула Коши. Область сходимости степенного ряда с комплексными коэффициентами. Разложение функции, голоморфной в круге, в ряд Тейлора. Интегральная формула для коэффициен-тов ряда Тейлора. Разложение функции, голоморфной в кольце, в ряд Лорана. Область сходимости ряда Лорана. Единственность лорановского разложения. Классификация изолированных особых точек голоморфных функций. Вычеты. Теорема Коши о вычетах. Вычеты и коэффициенты ряда Лорана.
- Топология (обзор понятий и результатов)Открытые и замкнутые подмножества Rn, внутренность и замыкание. Описание откры-тых подмножеств R. Непрерывные отображения из Rn в Rm. Топологические пространства. Компактность, критерий компактности подмножества Rn. Связность и линейная связность топологического пространства. Связность отрезка. Пример связного не линейно связного множества. Гомотопия отображений. Стягиваемость выпуклых множеств. Фундаментальная группа топологического пространства. Ее вычисление для окружно-сти S1 и сферы S2.
- Теория вероятностей (обзор понятий и результатов)Вероятностное пространство. Условная вероятность, формулы полной вероятности и Байеса. Независимость событий. Случайные величины. Функция распределения, плот-ность. Дискретные и непрерывные случайные величины. Математическое ожидание. Дисперсия. Случайные векторы (наборы случайных величин). Совместные функция распределения и плотность нескольких случайных величин. Независимость случайных величин, её вы-ражение в терминах совместной функции распределения и совместной плотности. Ко-вариация и коэффициент корреляции. Некоррелированность независимых величин. Виды сходимости последовательностей случайных величин: почти наверное, по вероятности, по распределению. Закон больших чисел. Усиленный закон больших чисел. Характеристические функции. Выражение сходимости по распределению в терминах характеристических функций. Центральная предельная теорема.
Элементы контроля
- Устный экзамен - решение одной задачи из заранее выдаваемого списка
- Устный экзамен - два теоретических вопроса