Специалитет
2020/2021
Дискретная математика
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Компьютерная безопасность)
Кто читает:
Департамент прикладной математики
Когда читается:
3-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Славнов Сергей Андреевич
Специальность:
10.05.01. Компьютерная безопасность
Язык:
русский
Кредиты:
5
Контактные часы:
56
Программа дисциплины
Аннотация
В данном курсе студенты познакомятся с понятиями дискретной математики как основой важной части математического аппарата теории вероятностей и математической статистики, исследования операций, дискретной оптимизации, компьютерных наук и других дисциплин, получат опыт анализа дискретных структур, развитие строгого логического мышления. Дисциплина реализуется в он-лайн формате
Цель освоения дисциплины
- Ознакомление студентов с основными методами и задачами комбинаторики и теории автоматов
Планируемые результаты обучения
- Знание основных понятий и методов теории автоматов, формальных языков, вычислимости и сложности
- Умение анализировать математические свойства алгоритмов и алгоритмических задач
- Умение применять методы дискретной математики в различных приложениях математики и компьютерных наук
Содержание учебной дисциплины
- Автоматы с магазинной памятью и контекстно-свободные языки1. Автоматы с магазинной памятью. Определение. Детерминированные и недетерминированные МПА. 2. Контекстно-свободные грамматики и языки. Дерево синтаксического разбора. Лемма о накачивании. Иерархия Хомского.
- Вычислимость1. Вычислимость по Тьюрингу. Тезис Тьюринга. Проблема остановки. Теорема Райса. 2. Примитивно-рекурсивные функции. Непримитивно-рекурсивные вычислимые функции. Функция Аккермана. Оператор минимизации. Общая рекурсия.
- Эффективная вычислимость, сложность, классы P и NP1. Эффективная вычислимость, класс P. Недетерминированные алгоритмы, класс FNP, труднорешаемые задачи. Примеры: задача об укладке рюкзака, задача целочисленного линейного программирования задача коммивояжера, задача о клике, задача о вершинном покрытии. Задача о разложении числа на простые множители, задача о дискретном логарифме. 2. Класс NP, разные определения. Сводимость и NP-полнота. Задача SAT. Примеры NP-полных задач: 3-SAT, задача о клике, задача о вершинном покрытии, задача об укладке рюкзака и задача целочисленного линейного программирования в варианте распознавания, задача коммивояжера. Сложность задачи о простоте числа (без доказательства).
Промежуточная аттестация
- Промежуточная аттестация (2 модуль)0.5 * Итоговая аттестация + 0.5 * Котрольные работы
Список литературы
Рекомендуемая основная литература
- Князьков В.С., Волченская Т.В. - Введение в теорию автоматов - Национальный Открытый Университет "ИНТУИТ" - 2016 - 89с. - ISBN: - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/100715
- Лекции по математической логике и теории алгоритмов. Ч.1: Начала теории множеств, Верещагин, Н. К., 2008
Рекомендуемая дополнительная литература
- Задачи по теории множеств, математической логике и теории алгоритмов, Лавров, И. А., 2004