Бакалавриат
2020/2021
Теория вероятностей и математическая статистика
Статус:
Курс обязательный (Управление бизнесом)
Направление:
38.03.02. Менеджмент
Кто читает:
Кафедра высшей математики
Где читается:
Высшая школа бизнеса
Когда читается:
2-й курс, 1 модуль
Формат изучения:
без онлайн-курса
Язык:
русский
Кредиты:
4
Контактные часы:
40
Программа дисциплины
Аннотация
Изучение дисциплины базируется на следующих дисциплинах: школьном курсе математики (включая раздел Теории Вероятностей) и курсе Высшей Математики, изучаемом на первом курсе. Для полноценного освоения дисциплины надо знать и понимать и уметь пользоваться: Из школы - базовыми формулами комбинаторики; знать простейшие операции над событиями; уметь вычислять вероятность в простейших задачах, понимать математический смыл выражений "не более", "менее", "как минимум" и тд. Из курса ВМ (1 курс): пределы, ряды – в простейшем виде; производные и поиск 2 экстремума, в том числе функции нескольких переменных; интегралы – смысл и основные методы интегрирования.
Цель освоения дисциплины
- Целями освоения дисциплины «Теория вероятностей и математическая статистика» являются: <br /> - овладение основными знаниями по теории вероятностей и математической статистике, что формирует у студентов высокую математическую культуру, включающую указанную область математики; <br /> - формирование у студентов специальных профессиональных знаний и вероятностно-статистического мышления, необходимых для успешной исследовательской, аналитической и прикладной работы в современных областях социально-экономического и управленческого анализа; <br /> - ясное понимание того, как знания, полученные в ходе изучения дисциплины, применяются в конкретных прикладных задачах.
Планируемые результаты обучения
- Настоящая дисциплина относится к циклу Математических и естественнонаучных дисциплин, базовая часть, обеспечивающих подготовку бакалавров. Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин: Бизнес-планирование, Введение в машинное обучение на языке Python, Введение в стратегический маркетинг, Введение в технологию маркетинговых исследований, Игровые модели принятия решений
Содержание учебной дисциплины
- Основные понятия и теоремы теории вероятностей.
- Элементы комбинаторики.
- Классическое определение вероятности.Элементарный исход. Событие. Вероятность. Операции над событиями. Вероятность объединения двух событий.
- Независимость событийУсловная вероятность. Независимость событий. Теорема умножения вероятностей.
- Формула полной вероятности и формула БайесаПолная система гипотез. Формула полной вероятности. Формула Байеса.
- Дискретные случайные величины и их свойстваДискретные случайные величины. Ряд распределения. Математическое ожидание, дисперсия, их свойства. Примеры распределений дискретных случайных величин: биномиальное, геометрическое, распределение Пуассона, обратное биномиальное. Независимые случайные величины. Совместное распределение.
- Непрерывные случайные величины и их свойстваФункция распределения и плотность непрерывной случайной величины. Математическое ожидание и дисперсия для случайных величин, задаваемых плотностью. Равномерно распределенная случайная величина. Экспоненциальное распределение.
- Нормальное распределениеНормальное (гауссово) распределение, его свойства. Сумма независимых нормальных случайных величин. Предельные теоремы: интегральная и локальная теоремы Муавра — Лапласа.
- Наиболее часто используемые законы распределения дискретных и непрерывных случайных величин. Применение этих законов для решения реальных задач экономического и социологического характера.Случайные величины, подчиняющиеся законам распределения Бернулли и Пуассона. Вычисление математического ожидания и стандартного отклонения для указанных законов. Случайные величины, подчиняющиеся равномерному, показательному распределениям. Вычисление математического ожидания и стандартного отклонения для перечисленных законов. Поток событий. Простейший (стационарный пуассоновский) поток событий. Связь показательного закона распределения и закона распределения Пуассона. Характеристическое свойство показательного закона распределения (свойство отсутствия памяти). Нормальный закон распределения. Математическое ожидание и стандартное отклонение для нормального закона. График плотности. Стандартное нормальное распределение. Вычисление вероятности попадания нормальной случайной величины в заданный интервал. Функция Лапласа (интеграл вероятностей); ее свойства. Применение таблиц функции Лапласа для вычисления вероятности попадания нормально распределенной случайной величины в заданный интервал. Правило трех . Композиция законов распределения. Свойство устойчивости некоторых законов распределения. Устойчивость нормального закона распределения. Применение введенных ранее законов распределения случайных величин для вычисления вероятностей событий в задачах экономической и социологической проблематики. Некоторые другие случайные величины как математические модели случайных явлений.
- Предельные теоремы теории вероятностей.Неравенство Маркова (лемма Чебышева). Неравенство Чебышева. Смысл закона больших чисел. Доказательство закона больших чисел в форме Чебышева. Его обобщение на случай зависимых случайных величин. Следствия закона больших чисел: теоремы Бернулли и Пуассона. Формулировка и содержание центральной предельной теоремы. Интегральная теорема Муавра-Лапласа как следствие центральной предельной теоремы. Применение закона больших чисел и центральной предельной теоремы в прикладных задачах: контроль качества продукции, задачи массового обслуживания, задачи страхования, маркетинговые исследования.
- Многомерная случайная величина. Линейный коэффициент корреляции.Многомерная случайная величина (случайный вектор). Закон распределения многомерной случайной величины. Функция распределения многомерной случайной величины. Двумерная нормальная случайная величина. Линейный коэффициент корреляции как параметр, характеризующий тесноту линейной связи двух случайных величин. Уравнение простой парной регрессии.
- Основы выборочного метода.Задачи математической и прикладной статистики. Генеральная совокупность. Случайная выборка. Повторные и бесповторные выборки. Репрезентативность выборки. Вариационный ряд. Эмпирическая функция распределения. Графическое изображение вариационного ряда: полигон, гистограмма, кумулята. Характеристики центральной тенденции (среднее арифметическое, мода, медиана, среднее геометрическое). Показатели вариации ряда (размах, выборочная дисперсия, выборочное стандартное отклонение, коэффициент вариации). Закон корня квадратного для стандартной ошибки среднего.
- Точечные и интервальные оценки параметров генеральной совокупности.Точечные оценки параметров генеральной совокупности. Требования, предъявляемые к точечным оценкам (несмещенность, эффективность, состоятельность, устойчивость). Метод наибольшего правдоподобия, метод наименьших квадратов и метод моментов как методы получения точечных оценок параметров генеральной совокупности. Наилучшие оценки математического ожидания, дисперсии, генеральной доли. Понятие интервального оценивания параметров генеральной совокупности. Доверительная вероятность и предельная ошибка выборки (точность оценки). Идея построения доверительного интервала. Построение доверительных интервалов для математического ожидания, стандартного отклонения, вероятности биномиального закона распределения. Интервальные оценки параметров нормально распределенной генеральной совокупности: среднего (при известной и неизвестной дисперсии), стандартного отклонения, вероятности биномиального закона распределения или доли признака. Объем выборки, обеспечивающий заданную предельную ошибку выборки.
- Проверка некоторых статистических гипотез.Статистическая гипотеза. Основная (нулевая) и альтернативная (конкурирующая) гипотезы, параметрические и непараметрические гипотезы, простые и сложные гипотезы. Критерий. Ошибки первого и второго рода. Критическая область и область принятия гипотезы. Уровень доверия и уровень значимости. Двусторонние, правосторонние, левосторонние критические области. Процедура проверки параметрической гипотезы. Проверка некоторых гипотез для нормально распределенных генеральных совокупностей: о числовом значении генерального среднего; о числовом значении генеральной доли (или о вероятности биномиального закона распределения), о равенстве генеральных средних, о равенстве генеральных долей. Проверка непараметрических гипотез.
Элементы контроля
- Текущая успеваемость семинарыРешение самостоятельных работ и ответы на семинарах, учитывается совместно с текущей успеваемостью на лекциях
- контрольная работа
- Экзаменационная контрольная работа
Форма экзамена: Экзамен проводится в письменной форме (решение контрольной работы) с использованием асинхронного прокторинга.
Студенты записывают решения задач (100 минут), в конце экзамена фотографируют решения и сдают их (20 минут).
Платформа проведения: Экзамен проводится на платформе StartExam. Ссылка на прохождение экзаменационного задания будет доступна студенту в РУЗ.
К экзамену необходимо подключиться за 15 минут до начала.
Компьютер студента должен удовлетворять требованиям:
https://eduhseru-my.sharepoint.com/:b:/g/personal/vsukhomlinov_hse_ru/EUhZkYaRxQRLh9bSkXKptkUBjy7gGBj39W_pwqgqqNo_aA?e=fn0t9N
Для участия в экзамене студент обязан:
Подготовить документ, удостоверяющий личность (паспорт, разворот с именем и фотографией) для идентификации перед началом выполнения экзаменационного задания;
Проверить работу видеокамеры и микрофона, скорость работы сети Интернет (для наилучшего результата рекомендуется подключение компьютера к сети через кабель);
Подготовить необходимые для выполнения экзаменационных заданий инструментов (ручка, листы бумаги, калькулятор и т. д.);
Отключить в диспетчере задач компьютера иные приложения, кроме браузера, в котором будет выполняться вход на платформу StartExam.
В случае, если одно из необходимых условий участия в экзамене невозможно выполнить, необходимо за 7 дней до даты проведения экзамена проинформировать об этом преподавателя или сотрудника учебного офиса для принятия решения об участии студента в экзаменах.
Во время экзамена студентам запрещено:
Выключать видеокамеру, выходить за угол обзора камеры; Пользоваться конспектами, учебниками, прочими учебными материалами (кроме указанного ниже рукописного листа А4)
Пользоваться умными гаджетами (смартфон, планшет и др.);
Привлекать посторонних лиц для помощи в проведении экзамена, разговаривать с посторонними во время выполнения заданий;
Вслух громко зачитывать задания.
Использовать наушники.
предпринимать какие-либо действия для распространения своего варианта и получения доступа к чужим вариантам (во время и после экзамена)
Во время экзамена студентам разрешено:
Использовать белые листы А4 для записи решений, ручку для ведения записей, расчетов;
Использовать калькулятор для ведения расчетов - либо инженерный, либо можно открыть в браузере что и стартэкзам сайт https://casio-calcs.ru/online/;
Разрешено использовать один личный лист а4 с написанной от руки "шпаргалкой". Никаких других рукописных или печатных материалов использовать нельзя.
Во время проведения экзамена и после него нельзя распространять экзаменационные материалы, нельзя получать доступ к экзаменационным материалам других студентов.
Кратковременным нарушением связи во время экзамена считается потеря сетевой связи студента с платформой StartExam не более 5 минут. Долговременным нарушением связи во время экзамена считается потеря сетевой связи студента с платформой StartExam более 5 минут.
В случае долговременного нарушения связи с платформой StartExam во время выполнения экзаменационного задания, студент должен уведомить об этом преподавателя, зафиксировать факт потери связи с платформой (скриншот, ответ от провайдера сети Интернет) и об - Текущая успеваемость лекцииучитывается совместно с семинарской текущей успеваемостью
Промежуточная аттестация
- Промежуточная аттестация (1 модуль)0.15* текущая успеваемость семинары+0.15 текущая успеваемость лекции + 0.2*контрольная работа + 0.5* экзамен
Список литературы
Рекомендуемая основная литература
- Теория вероятностей : учебник для экономических и гуманитарных специальностей: учеб. пособие для вузов, Тюрин, Ю. Н., 2009
Рекомендуемая дополнительная литература
- Теория вероятностей и математическая статистика в задачах : более 360 задач и упражнений, Борзых, Д. А., 2016