• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2021/2022

Линейная регрессия и моделирование

Статус: Курс по выбору (Управление в социальной сфере)
Направление: 38.04.04. Государственное и муниципальное управление
Когда читается: 2-й курс, 1 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 9
Охват аудитории: для своего кампуса
Прогр. обучения: Управление в социальной сфере
Язык: английский
Кредиты: 3
Контактные часы: 2

Course Syllabus

Abstract

The course “Linear Regression and Modeling” is taught on educational online platform “Coursera.org”. Discipline studies are carried out by students independently on the basis of an online course “Linear Regression and Modeling”, https://www.coursera.org/learn/linear-regression-model, Duke University. This course introduces simple and multiple linear regression models. These models allow you to assess the relationship between variables in a data set and a continuous response variable. Is there a relationship between the physical attractiveness of a professor and their student evaluation scores? Can we predict the test score for a child based on certain characteristics of his or her mother? In this course, you will learn the fundamental theory behind linear regression and, through data examples, learn to fit, examine, and utilize regression models to examine relationships between multiple variables, using the free statistical software R and RStudio.
Learning Objectives

Learning Objectives

  • Learn the fundamental theory behind linear regression and, through data examples
  • Learn to fit and utilize regression models to examine relationships between multiple variables, using the free statistical software R and RStudio
Expected Learning Outcomes

Expected Learning Outcomes

  • Learn to model numerical response variables using multiple predictors
  • To introduce linear regression
  • To introduce linear regression and variability partitioning
  • To introduce Statistics with R and Linear Regression and Modeling.
Course Contents

Course Contents

  • About Linear Regression and Modeling
  • More about Linear Regression
  • Linear Regression
  • Multiple Regression
Assessment Elements

Assessment Elements

  • non-blocking Online tests
  • non-blocking Final interview
  • non-blocking Online tests
  • non-blocking Final interview
Interim Assessment

Interim Assessment

  • 2021/2022 1st module
    0.3 * Final interview + 0.7 * Online tests
Bibliography

Bibliography

Recommended Core Bibliography

  • Montgomery, D. C., Vining, G. G., & Peck, E. A. (2012). Introduction to Linear Regression Analysis (Vol. 5th ed). Hoboken, NJ: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1021709
  • Yan, X., Su, X., & World Scientific (Firm). (2009). Linear Regression Analysis: Theory And Computing. Singapore: World Scientific. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=305216

Recommended Additional Bibliography

  • Hocking, R. R. (2013). Methods and Applications of Linear Models : Regression and the Analysis of Variance (Vol. Third edition). Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=603362
  • Meyer C. D. Matrix analysis and applied linear algebra. – Siam, 2000. – 718 pp.

Authors

  • SELEZNEVA ELENA VLADIMIROVNA
  • GRISCHENKO NATALYA BORISOVNA