• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2021/2022

Анализ данных в Python

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Направление: 38.04.01. Экономика
Когда читается: 2-й курс, 3 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 10
Охват аудитории: для всех кампусов НИУ ВШЭ
Прогр. обучения: Прикладная экономика и математические методы
Язык: английский
Кредиты: 5
Контактные часы: 4

Course Syllabus

Abstract

This course will introduce students to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library.
Learning Objectives

Learning Objectives

  • introduce students to the basics of the python programming
Expected Learning Outcomes

Expected Learning Outcomes

  • will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses.
Course Contents

Course Contents

  • Jupyter Notebook
  • DataFrame structures
  • Manipulating DataFrames
  • Statistical techniques
Assessment Elements

Assessment Elements

  • non-blocking online
  • non-blocking exam
  • non-blocking online
  • non-blocking exam
Interim Assessment

Interim Assessment

  • 2021/2022 3rd module
    0.5 * exam + 0.5 * online
Bibliography

Bibliography

Recommended Core Bibliography

  • Nelli, F. (2015). Python Data Analytics : Data Analysis and Science Using Pandas, Matplotlib and the Python Programming Language. [Berkeley, CA]: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1056488

Recommended Additional Bibliography

  • CONTENTS 1 Blender/Python Documentation 3. (2011). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.3109D75A

Authors

  • KRASILNIKOV ALEKSANDR ALEKSANDROVICH