Бакалавриат
2020/2021
Математический анализ
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус:
Курс обязательный (Совместный бакалавриат НИУ ВШЭ и ЦПМ)
Направление:
01.03.01. Математика
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Преподаватели:
Бланк Михаил Львович,
Вьюгин Илья Владимирович,
Дунин-Барковский Петр Игоревич,
Маркарян Никита Суренович,
Пенской Алексей Викторович,
Скопенков Михаил Борисович,
Скрипченко Александра Сергеевна,
Такэбэ Такаси,
Чепыжов Владимир Викторович,
Шилин Иван Сергеевич
Язык:
русский
Кредиты:
11
Контактные часы:
252
Программа дисциплины
Аннотация
Курс посвящен основам классического математического анализа (вещественные числа, множества вещественных чисел, последовательности и их пределы, функции вещественного переменного, пределы, производные, графики, формула Тейлора, функции нескольких переменных, дифференциалы отображений, числовые, степенные и функциональные ряды, интегралы и приложения интегрального исчисления, теорема о неявной функции и ее приложения, условный экстремум функций многих переменных).
Цель освоения дисциплины
- Изучение теоретических основ математического анализа, необходимых для дальнейшего продвижения во всех аналитических дисциплинах в процессе обучения на факультете.
- Приобретение необходимых навыков для решения вычислительных задач.
Планируемые результаты обучения
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение находить пределы последовательностей.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение использовать признаки сходимости положительных рядов.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знакомство с понятием компактности. Компактность множеств на числовой прямой.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение находить простейшие пределы функций.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знание глобальных свойств функций, непрерывных на отрезке. Умение использовать эти свойства при решении задач и доказательстве теорем.
- Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знание свойств монотонных функций и непрерывных на отрезке. Умение использовать эти свойства при решении задач и доказательстве теорем.
- Знание строгого определения и свойств элементарных функций. Умение использовать эти свойства при решении задач и доказательстве теорем.
- Знание определения производной и дифференциала. Знание теорем о производной сложной функции и о производной обратной функции.
- Знание основных теорем дифференциального исчисления: теорем Ферма, Ролля, Лагранжа, Коши. Умение использовать их при решении задач.
- Умение вычислять производные высших порядков по формуле Лейбница.
- Разложение функций по формуле Тейлора, знание стандартных разложений.
- Свободное решение задач на нахождение пределов, производных, нахождения экстремумов, монотонности и выпуклости функций.
- Умение находить локальные максимумы функций одного переменного.
- Построение графиков функций и кривых на плоскости, в том числе заданных параметрически и неявно.
- Умение находить первообразные от стандартных функций.
- Знание определений (частные производные, градиент, якобиан, производная по направлению) и простейших свойств.
- Знание формулировки и доказательства одномерной теоремы о неявной функции.
- Исследование числовых и функциональных рядов на сходимость и равномерную сходимость.
- Исследование функциональных рядов на сходимость и равномерную сходимость.
- Исследование степенных рядов на сходимость и равномерную сходимость. Умение вычислять радиус сходимости.
- Знание двух методов суммирования расходящихся рядов: по Абелю и по Пуассону.
- Знание условий сходимости двойных рядов и условий возможности перестановки сумм в повторных рядах.
- Знание, что такое определенный интеграл и когда он определен. Критерии интегрируемости.
- Умение использовать теоремы о среднем для интеграла Римана.
- Умение вычислять длину кривой, заданной параметрически.
- Умение доказывать сходимость и расходимость несобственных интегралов.
- Умение находить интерполяционные многочлены Лагранжа и Эрмита.
- Умение исследовать интегралы, зависящие от параметров.
- Знание определений и простых основных формул. Умение использовать при решении задач.
- Знание формулировок теорем о среднем для функций многих переменных и умение их применять при решении задач.
- Знать доказательство принципа сжимающих отображений, в том числе его параметрического варианта.
- Доказательство теоремы о неявной функции. Теорема об обратном отображении.
- Умение разлагать функцию многих переменных по формуле Тейлора.
- Умение находить критические точки и локальные экстремумы.
- Знание теорем о приведении диффеоморфизма к каноническому виду и о разложении в произведение простейших и их доказательств.
- Знание леммы Адамара и леммы Морса.
- Знание, что такое поверхность в конечномерном пространстве. Умение находить условный экстремум методом множителей Лагранжа.
Содержание учебной дисциплины
- Вещественные числа. Свойства подмножеств $\R$.
- Предел последовательности. Подпоследовательности. Фундаментальные последовательности, критерий Коши. Монотонные последовательности.
- Числовые ряды. Признаки сходимости рядов с положительными членами.
- Компактность и секвенциальная компактность.
- Предел функции. Непрерывные функции. Разрывы, классификация точек разрыва. Локальные свойства непрерывных функций.
- Глобальные свойства непрерывных функций.
- Монотонные функции.
- Элементарные функции. Определения и свойства.
- Производные. Дифференциал. Производная сложной функции, производная обратной функции.
- Основные теоремы дифференциального исчисления.
- Производные высших порядков. Формула Лейбница.
- Формула Тейлора. Формулы для остаточного члена. Ряд Тейлора.
- Выпуклые функции и их свойства.
- Локальный экстремум.
- Исследование графиков функций.
- Неопределённый интеграл.
- Функции многих переменных. Дифференцируемость функций многих переменных. Дифференцирование композиции отображений.
- Неявная функция простейший случай.
- Знакопеременные ряды. Произведение рядов.
- Равномерная сходимость. Теорема Дини. Теорема о перестановке ряда и предела.
- Степенные ряды.
- Суммирование расходящихся рядов.
- Двойные ряды. Бесконечные произведения. Формула для разложения синуса.
- Интеграл Римана. Критерий интегрируемости Лебега. Интеграл, как функция верхнего предела.
- Теоремы о среднем для интеграла Римана.
- Длина кривой. Ориентация на гладкой кривой.
- Несобственные интегралы.
- Задача об интерполяции.
- Собственные и несобственные интегралы, зависящие от параметра. Перестановка интегралов, дифференцирование.
- Гамма-функция. Бета-функция. Формула Стирлинга.
- Дифференцируемость отображений из $\R^{m}$ в $\R^{n}$. Теоремы о среднем (для функций и для отображений).
- Принцип сжимающих отображений.
- Теорема о неявной функции.
- Формула Тейлора для функций многих переменных.
- Локальный экстремум. Критические точки.
- Диффеоморфизмы. Приведение к каноническому виду, теорема о ранге. Разложение диффеоморфизма в композицию простейших.
- Лемма Морса.
- Поверхность, задача об условном экстремуме. Метод множителей Лагранжа.
Элементы контроля
- Коллоквиум 1 семестр
- Коллоквиум 2 семестр
- Экзамен за 1 семестр
- Экзамен 2 семестра
- листки (1 семестр)Сданные "лишние" задачи не пропадают, а будут потом учтены при округлении результирующей оценки за семестр.
- листки (2 семестр)Сданные "лишние" задачи не пропадают, а будут потом учтены при округлении результирующей оценки за семестр.
- работа на семинарах,
Промежуточная аттестация
- Промежуточная аттестация (2 модуль)Оценка за семестр является средневзвешенной оценкой за экзамен (0.25), коллоквиум (0.25), участие в семинарах (0.3) и оценкой за листки (0.2); в скобках указаны веса компонентов. округление оценки за семестр в сторону ближайшего целого числа, n 5 округляется до n+1.
- Промежуточная аттестация (4 модуль)Оценка за семестр является средневзвешенной оценкой за экзамен (0.25), коллоквиум (0.25), участие в семинарах (0.3) и оценкой за листки (0.2); в скобках указаны веса компонентов. округление оценки за семестр в сторону ближайшего целого числа, n 5 округляется до n+1.
Список литературы
Рекомендуемая основная литература
- Ильин В. А., Садовничий В. А., Сендов Б. Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Ч. ЧАСТЬ 1 В 2 КН. КНИГА 1 4-е изд., пер. и доп. Учебник для вузов - М.:Издательство Юрайт - 2020 - 324с. - ISBN: 978-5-534-07067-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-ch-chast-1-v-2-kn-kniga-1-452409
- Математический анализ. Т. 1: ., Зорич, В. А., 2015
Рекомендуемая дополнительная литература
- Ильин В. А., Садовничий В. А., Сендов Б. Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Ч. ЧАСТЬ 1 В 2 КН. КНИГА 2 4-е изд., пер. и доп. Учебник для вузов - М.:Издательство Юрайт - 2020 - 315с. - ISBN: 978-5-534-07069-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-ch-chast-1-v-2-kn-kniga-2-452410
- Ильин В. А., Садовничий В. А., Сендов Б. Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Ч. ЧАСТЬ 2 3-е изд. Учебник для вузов - М.:Издательство Юрайт - 2020 - 324с. - ISBN: 978-5-534-09085-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-ch-chast-2-450170