• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2021/2022

Научно-исследовательский семинар "Анализ данных и искусственный интеллект 2"

Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 4-й курс, 1-3 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 5
Контактные часы: 52

Course Syllabus

Abstract

В качестве основной цели курса рассматривается выработка у студентов 4-го курса ОП Прикладная математика и информатика навыков работы с научными текстами, понимания математических идей и превращении их в алгоритмы и работающий код. В качестве области знаний предлагается использовать современные алгоритмы кластеризации и современные алгоритмы прогнозирования временных рядов. К необходимым предварительным знаниям следует отнести математический анализ, линейную алгебру, теорию вероятностей и математическую статистику, теорию сложности алгоритмов.
Learning Objectives

Learning Objectives

  • В качестве основной цели курса рассматривается выработка у студентов 4-го курса ОП Прикладная математика и информатика навыков работы с научными текстами, понимания математических идей и превращении их в алгоритмы и работающий код.
Expected Learning Outcomes

Expected Learning Outcomes

  • Знание современных направлений в теории искусственных нейронных сетей
  • Знания современных практически значимых алгоритмов кластеризации
  • Знания современных практически значимых алгоритмов прогнозирования временных рядов
  • Умения работать со сложными математическими текстами, преобразовывать их в алгоритмы и, далее, в код
  • Умения работать со сложными математическими текстами, преобразовывать их в алгоритмы и, далее, в код
Course Contents

Course Contents

  • Кластеризация на основе эмпирической функции плотности (density-based clustering)
  • Выбор наиболее репрезентативных признаков для кластеризации (feature selection)
  • Кластеризация связанных данных (linked data)
  • Кластеризация высокоразмерных данных (high-dimensional data)
  • Алгоритмы, позволяющие различать хаотические и временные ряды: вычисление старшего показателя Ляпунова, построение плоскости энтропия-сложность
  • Прогнозирование на основе кластеризации (predictive clustering)
  • Представление информации о временном ряде в виде дискретных структур (графы, тензоры и др.)
  • Предсказание точек смены тренда во временных рядах (early-warning signs, tipping points)
  • Конструктивные нейронные сети.
  • Нейродифференциальные уравнения.
  • Теория информации и нейронные сети.
  • Машина Больцмана.
Assessment Elements

Assessment Elements

  • non-blocking Выступление с презентацией 1
    В подготовке презентации могут принимать участие несколько человек.
  • non-blocking Коллоквиум 1
  • non-blocking Выступление с презентацией 2
    В подготовке презентации могут принимать участие несколько человек.
  • non-blocking Коллоквиум 2
  • non-blocking Выступление с презентацией 3
    В подготовке презентации могут принимать участие несколько человек.
  • non-blocking Коллоквиум 3
    Оценка выставляется по накопленной, экзамен не проводится
Interim Assessment

Interim Assessment

  • 2021/2022 3rd module
    0.1 * Коллоквиум 1 + 0.2 * Выступление с презентацией 3 + 0.1 * Коллоквиум 2 + 0.2 * Выступление с презентацией 1 + 0.2 * Выступление с презентацией 2 + 0.2 * Коллоквиум 3
Bibliography

Bibliography

Recommended Core Bibliography

  • Mirkin, B. Core concepts in data analysis: summarization, correlation and visualization. – Springer Science & Business Media, 2011. – 388 pp.

Recommended Additional Bibliography

  • Rachev, S. T. et al. Financial models with Lévy processes and volatility clustering. – John Wiley & Sons, 2011. – 394 pp.

Authors

  • GROMOV VASILIY ALEKSANDROVICH