Бакалавриат
2021/2022
Основы программирования в Python
Статус:
Курс обязательный (Мировая экономика)
Направление:
38.03.01. Экономика
Где читается:
Факультет мировой экономики и мировой политики
Когда читается:
2-й курс, 4 модуль
Формат изучения:
с онлайн-курсом
Онлайн-часы:
50
Охват аудитории:
для всех кампусов НИУ ВШЭ
Язык:
русский
Кредиты:
3
Контактные часы:
38
Программа дисциплины
Аннотация
На сегодняшний день Python является стандартом индустрии для анализа данных. По окончании этого курса студенты получат в свое распоряжение набор аналитических инструментов, которые им пригодятся как в академии, так и при работе в частном или государственном секторе. Целью этого курса является развитие навыков программирования и создание крепкой практической базы для анализа и презентации данных. Также мы познакомимся с задачами и алгоритмами машинного обучения, что задаст вектор развития для тех студентов, которые захотят углубиться в предмет. С использованием онлайн-курса «Python как иностранный».
Цель освоения дисциплины
- Развитие и закрепление навыков программирования на языке Python.
- Формирование и развитие навыков работы со специализированными библиотеками для обработки, визуализации и анализа данных (pandas, numpy, plotly, matplotlib, seaborn).
- Развитие навыков работы с данными: обработка, визуализация, разведывательный анализ.
- Освоение терминологии машинного обучения и знакомство с базовыми алгоритмами.
- Развитие навыков постановки исследовательской задачи и тестирования гипотез с помощью количественных методов.
Планируемые результаты обучения
- Выбирает корректные графики для визуализации данных.
- Выбирает правильный тип визуализации для решения конкретной задачи.
- Загружает данные в pandas и работает с ними (фильтрация, агрегация, заполнение пропущенных значений).
- Настраивает внешний вид графиков в библиотеках Python для визуализации.
- Определяет тип задачи машинного обучения, выбирает корректные модели для ее решения, осуществляет подбор параметров и выбирает лучшую модель.
- Подсчитывает описательные статистики, оценивает распределения, интерпретирует корреляции.
- Проводит разведывательный анализ данных с помощью визуализаций.
- Проводит разведывательный анализ данных.
- Реализовывает простые алгоритмы машинного обучения.
- Решает задачи машинного обучения от постановки исследовательского вопроса до интерпретации результатов.
- Уверенно пользуется языком Python для решения аналитических задач.
- Умеет интерпретировать описательные статистики и особенности распределения переменных.
- Умеет проверять гипотезы при помощи t-теста и Z-теста. Умеет сделать вывод о принятии/опровержении нулевой гипотезы.
Содержание учебной дисциплины
- Основы программирования в Python
- Основы статистики
- Введение в анализ данных на Python
- Визуализация данных
- Введение в машинное обучение
Элементы контроля
- Контрольная работа (Питон)Контрольная выдается на дом, до дедлайна нужно прорешать задания на платформе online.hse.ru.
- Онлайн-курсОнлайн курс "Python как иностранный" на платформе Онлайн-образование в НИУ ВШЭ https://online.hse.ru/, который будет изучаться студентами в течение 3 модуля. Задания онлайн курса состоят из задач на самопроверку и тестов и задач на оценку, а также квизов по академической этике для зачета темы недели. В формуле учитываются только оцениваемые элементы контроля. Тесты на оценку рассчитываются с весом 0.3, задачи на оценку – с весом 0.7. Для зачета недели за квиз по читингу нужно набрать ровно 8 баллов или более.
- Экзамен (анализ данных)Экзамен проводится онлайн в письменной форме с использованием синхронного прокторинга.
- Домашние задания (среднее всех)В течение 4 модуля для закрепления практических навыков на семинарах будут предлагаться небольшие домашние задания.
- ПроектПроект выполняется в командах из 2-3 человек. Цель – провести небольшое исследование анализа данных полного цикла по выбранной теме. Этапы проекта: сбор, предобработка данных; создание новых переменных и статистический анализ; визуализация данных, построение различных графиков; применение простых алгоритмов машинного обучения для предсказания целевой переменной.
- Бонусные баллыУ студентов будет возможность получить бонусные баллы за работу на семинарах и дополнительные практические задания вне класса.
- Квизы по читингуПросмотр видео и прохождение квиза по читингу являются обязательными для каждой недели онлайн курса для зачета тестов и задач на оценку.
Промежуточная аттестация
- 2021/2022 учебный год 4 модульИтог = Минимум (0.15 * Онлайн курс + 0.001 * Квизы по читингу + 0.1 * Домашние задания (среднее всех) + 0.2 * Контрольная работа (Питон) + 0.25 * Проект + 0.3 * Экзамен (анализ данных) + 0.1 * Бонусные баллы, 10)
Список литературы
Рекомендуемая основная литература
- Lutz, M. (2011). Programming Python : Powerful Object-Oriented Programming (Vol. 4th ed). Sebastopol, CA: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=415412
- Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)
Рекомендуемая дополнительная литература
- Mirkin, B. Core concepts in data analysis: summarization, correlation and visualization. – Springer Science & Business Media, 2011. – 388 pp.
- Miroslav Kubat. (2017). An Introduction to Machine Learning (Vol. 2nd ed. 2017). Springer.
- Основы алгоритмизации и программирования на Python : учеб. пособие / С.Р. Гуриков. — М. : ФОРУМ : ИНФРА-М, 2020. — 343 с. — (Среднее профессиональное образование). - Режим доступа: http://znanium.com/catalog/product/1042452
- Северенс, Ч. Введение в программирование на Python : учебное пособие / Ч. Северенс. — 2-е изд. — Москва : ИНТУИТ, 2016. — 231 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100703 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.