Магистратура
2021/2022
Машинное обучение
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус:
Курс обязательный (Финансовые технологии и анализ данных)
Направление:
01.04.02. Прикладная математика и информатика
Где читается:
Факультет компьютерных наук
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Прогр. обучения:
Финансовые технологии и анализ данных
Язык:
русский
Кредиты:
6
Контактные часы:
56
Программа дисциплины
Аннотация
Курс посвящён изучению основных методов машинного обучения. Изучаемые темы можно разбить на три блока. Первый — работа с данными и предварительный анализ данных. Изучаются библиотеки языка Python для работы с табличными данными и для визуализации, обсуждаются методы предобработки данных, подготовки категориальных и текстовых данных. Второй блок — обучение с учителем. Изучаются линейные модели, решающие деревья, композиции моделей (случайный лес, градиентный бустинг и его имплементации), приложения в рекомендательных системах. Третий блок — обучение без учителя. Изучаются методы кластеризации, визуализации, понижения размерности. Все темы сопровождаются практикой на реальных данных. По итогам курса слушатель сможет сформулировать задачу машинного обучения, выбрать метрику качества, обучить модель, подобрать гиперпараметры, провести валидацию.
Цель освоения дисциплины
- Ознакомление студентов с теоретическими основами и основными принципами машинного обучения — а именно, с классами моделей (линейные, логические, нейросетевые), метриками качествами и подходами к подготовке данных. Формирование у студентов практических навыков работы с данными и решения прикладных задач анализа данных.
Планируемые результаты обучения
- Ознакомление студентов с теоретическими основами и основными принципами машинного обучения — а именно, с классами моделей (линейные, логические, нейросетевые), метриками качествами и подходами к подготовке данных. Формирование у студентов практических навыков работы с данными и решения прикладных задач анализа данных.
- Ознакомление студентов с теоретическими основами и основными принципами машинного обучения — а именно, с классами моделей (линейные, логические, нейросетевые), метриками качествами и подходами к подготовке данных. Формирование у студентов практических навыков работы с данными и решения прикладных задач анализа данных.
Содержание учебной дисциплины
- Введение в машинное обучение
- Обучение без учителя
- Линейные методы регрессии
- Линейные методы классификации
- Особенности работы с реальными данными
- Работа с признаками
- Решающие деревья
- Композиции алгоритмов
- Нейронные сети
- Подходы к извлечению признаков для сложных данных
- Рекомендательные системы
Элементы контроля
- Контрольная работа
- Самостоятельные работыСамостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
- Практические домашние работы
- Теоретические домашние задания
- Письменный экзамен
Промежуточная аттестация
- 2021/2022 учебный год 2 модуль0.07 * Самостоятельные работы + 0.14 * Контрольная работа + 0.28 * Практические домашние работы + 0.3 * Письменный экзамен + 0.21 * Теоретические домашние задания
Список литературы
Рекомендуемая основная литература
- An introduction to statistical learning : with applications in R, , 2013
Рекомендуемая дополнительная литература
- Mohri, M., Talwalkar, A., & Rostamizadeh, A. (2012). Foundations of Machine Learning. Cambridge, MA: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=478737