Магистратура
2021/2022
Дифференциальные уравнения на многообразиях
Статус:
Курс обязательный (Математика)
Направление:
01.04.01. Математика
Кто читает:
Кафедра фундаментальной математики
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Станкевич Наталия Владимировна
Прогр. обучения:
Математика
Язык:
английский
Кредиты:
6
Контактные часы:
60
Course Syllabus
Abstract
Differential equations on manifolds is a half-year course for the first-year students of master degree in mathematics. It is based on courses of Mathematical Analysis, Linear Algebra and Topology. The course is devoted to studying of classical and modern methods of qualitative theory of dynamical systems in manifolds and prepares students for understanding further courses Ergodic Theory, Theory of Local Bifurcations, Modern Theory of Dynamical Systems.
Learning Objectives
- Studying of basic methods of qualitative theory and important classes od dynamical systems on manifolds: local and global analysis, hyperbolic points and sets, energy function, Morse-Smale systems, hyperbolic systems.
Expected Learning Outcomes
- A student knows motivation and basic technics of the topic, is able to apply his knowledge to solution of textbook problems and confidently use a terminology of the subject.
Course Contents
- Topology of manifolds and vector fields on manifolds.
- Local analysis.
- Hyperbolic dynamics.
- Morse-Smale Systems
Interim Assessment
- 2021/2022 1st module0.7 * итоговый опрос по разделу + 0.3 * контрольная работа
- 2021/2022 2nd module0.3 * контрольная работа + 0.7 * итоговый опрос по разделу
Bibliography
Recommended Core Bibliography
- Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L.O. Methods Of Qualitative Theory In Nonlinear Dynamics (Part II). World Sci //Singapore, New Jersey, London, Hong Kong. – 2001.
Recommended Additional Bibliography
- Grines V., Medvedev Timur, Pochinka O. Dynamical Systems on 2- and 3-Manifolds. Switzerland : Springer, 2016.