Бакалавриат
2021/2022
Математический анализ
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Математика)
Направление:
01.03.01. Математика
Кто читает:
Кафедра фундаментальной математики
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
19
Контактные часы:
288
Программа дисциплины
Аннотация
Математический анализ занимает основополагающую позицию в образовании студентов специальности «Математика», давая язык, логику и понятия, необходимые для овладения большинством математических дисциплин, таких как дифференциальные и интегральные уравнения, функциональный анализ, теория функций действительных переменных, теория функций комплексных переменных, вычислительные методы, дифференциальная геометрия, топология, теория вероятностей и других
Цель освоения дисциплины
- Целями освоения дисциплины «Математический анализ» являются углубленное изучение основных понятий математического анализа (предельный переход, непрерывность, дифференцируемость, интегрируемость), овладение методами математического анализа функций одной и нескольких вещественных переменных (построение графиков, нахождение локальных и глобальных экстремумов функций), применение полученных знаний к анализу различных математических моделей.
Планируемые результаты обучения
- Знать аксиоматическое определение поля вещественных чисел. Знать графики основных элементарных функций: прямая, парабола, кубическая парабола, окружность, гипербола, показательная и логарифмическая функции, тригонометрические функции, обратные тригонометрические функции и их свойства.
- Знать определение предела последовательности, основные свойства пределов, замечательные пределы. Знать определение предела функции, уметь графически его интерпретировать. Уметь вычислять пределы функций, исследовать функцию на непрерывность.
- Знать определения предела, непрерывности, дифференцируемости функции многих переменных. Уметь вычислять частные производные, а также по направлению; строить касательную плоскость и нормаль к поверхности.Уметь находить экстремум функции нескольких переменных, её наибольшее и наименьшее значения. Владеть техникой нахождения условного экстремума.
- Знать правила вычисления и таблицу интегралов. Уметь выбрать подходящий способ для вычисления интеграла функции. Владеть основными методами вычисления интегралов: замена переменной, интегрирование по частям, вычисление интеграла от рациональной функции. Знать замены, приводящие к интегралу от рациональной функции. Уметь вычислять с помощью определённого интеграла площадь плоской фигуры, длину дуги, объём и площадь поверхности тела вращения.
- Знать таблицу производных и правила их вычисления. Владеть техникой вычисления производной функции заданной явно, неявно, параметрически. Уметь использовать правило Лопиталя для вычисления пределов.Знать разложения основных элементарных функций по формуле Маклорена. Уметь провести исследование функции с помощью производной и построить её график. Уметь находить наибольшее и наименьшее значения функции на отрезке.
Содержание учебной дисциплины
- Введение в анализ
- Пределы последовательности и функции. Непрерывность функции
- Дифференциальное исчисление функций одной переменной
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций многих переменных
Элементы контроля
- Коллоквиум
- Экзамен
- Контрольная работа
- Коллоквиум
- Итоговый устный опрос
- Работа на занятиях
Промежуточная аттестация
- 2021/2022 учебный год 2 модуль0.5 * Контрольная работа + 0.25 * Экзамен + 0.25 * Коллоквиум
- 2021/2022 учебный год 4 модуль0.3 * Контрольная работа + 0.3 * Итоговый устный опрос + 0.2 * Коллоквиум + 0.2 * Работа на занятиях
- 2022/2023 учебный год 2 модуль
- 2022/2023 учебный год 4 модуль
Список литературы
Рекомендуемая основная литература
- Максимова О. Д. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В ПРИМЕРАХ И ЗАДАЧАХ. ПРЕДЕЛ ФУНКЦИИ 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 200с. - ISBN: 978-5-534-07222-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-primerah-i-zadachah-predel-funkcii-442137
- Максимова О. Д. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В ПРИМЕРАХ И ЗАДАЧАХ. ПРЕДЕЛ ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 177с. - ISBN: 978-5-534-07208-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-primerah-i-zadachah-predel-chislovoy-posledovatelnosti-442138
- Математический анализ в вопросах и задачах, учебное пособие, под ред. В. Ф. Бутузова, 5-е изд., испр., 480 с., Бутузов, В. Ф., Крутицкая, Н. Ч., Медведев, Г. Н., Шишкин, А. А., 2002
- Математический анализ, учебник, Ч. 1, 7-е изд., новое доп., XII, 564 с., Зорич, В. А., 2015
- Садовничая И. В., Фоменко Т. Н. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 2-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 206с. - ISBN: 978-5-534-06584-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-funkcii-mnogih-peremennyh-438941
- Садовничая И. В., Фоменко Т. Н. ; Под общ. ред. Ильина В.А. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 2-е изд., пер. и доп. Учебное пособие для академического бакалавриата - М.:Издательство Юрайт - 2019 - 115с. - ISBN: 978-5-534-08473-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-predel-i-nepreryvnost-funkcii-odnoy-peremennoy-441132
- Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В., Ильин В. А. ; Под общ. ред. Ильина В.А. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ВЕЩЕСТВЕННЫЕ ЧИСЛА И ПОСЛЕДОВАТЕЛЬНОСТИ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 109с. - ISBN: 978-5-534-08472-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-veschestvennye-chisla-i-posledovatelnosti-441194
- Садовничая И. В., Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ В 2 Ч. ЧАСТЬ 2 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 199с. - ISBN: 978-5-534-06836-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-opredelennyy-integral-v-2-ch-chast-2-441163
- Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 187с. - ISBN: 978-5-534-06949-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-neopredelennyy-integral-441157
Рекомендуемая дополнительная литература
- Капкаева Л. С. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ТЕОРИЯ ПРЕДЕЛОВ, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ 2-е изд., испр. и доп. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 246с. - ISBN: 978-5-534-04898-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-teoriya-predelov-differencialnoe-ischislenie-438965
- Никитин А. А., Фомичев В. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. УГЛУБЛЕННЫЙ КУРС 2-е изд., испр. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 460с. - ISBN: 978-5-534-00464-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-uglublennyy-kurs-432899
- Потапов А. П. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ В 2 Ч. ЧАСТЬ 1. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 256с. - ISBN: 978-5-534-04680-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencialnoe-i-integralnoe-ischislenie-funkciy-odnoy-peremennoy-v-2-ch-chast-1-433687
- Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 156с. - ISBN: 978-5-534-06596-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencirovanie-funkciy-odnoy-peremennoy-441179