• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2021/2022

Квантовая механика для математиков

Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Математика)
Направление: 01.04.01. Математика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: с онлайн-курсом
Охват аудитории: для своего кампуса
Преподаватели: Галкин Олег Евгеньевич
Прогр. обучения: Математика
Язык: английский
Кредиты: 6
Контактные часы: 60

Course Syllabus

Abstract

Within the framework of the discipline "Quantum mechanics for mathematicians", it is planned to present, in particular, the following topics in a form accessible to mathematics students: the algebra of observables in classical mechanics, states in classical statistical mechanics, physical bases of quantum mechanics, states in quantum mechanics, the Schrödinger equation, the Heisenberg commutation relations, coordinate and momentum representations, the interconnection between quantum and classical mechanics, the harmonic oscillator, the hydrogen atom, scattering of a one-dimensional particle by a potential barrier. Knowledge of classical mechanics is welcome.
Learning Objectives

Learning Objectives

  • Formation and generalization of knowledge on quantum mechanics at the level of fundamental physical theory; mastering the mathematical apparatus of quantum mechanics; formation of the ability to apply theoretical knowledge in solving problems of quantum mechanics; the development of physical thinking; mastery of theoretical methods of cognition.
Expected Learning Outcomes

Expected Learning Outcomes

  • To have a concept of the algebra of observables and states in classical mechanics. To know Liouville’s theorem, and two pictures of motion in classical mechanics. To understand the physical bases of quantum mechanics.
  • To have a concept of the observables and states in quantum mechanics. To know Heisenberg uncertainty relations. Physical meaning of the eigenvalues and eigenvectors of observables. To understand two pictures of motion in quantum mechanics. To be able to write and solve Schrödinger equation. To be able to find stationary states.
  • To know the Heisenberg commutation relations. To be able to pass from coordinate representations to momentum representations and back. To have a concept of eigenfunctions of the operators Q and P. To know the interconnection between quantum and classical mechanics. To be able to calculate the eigenfunctions and eigenvalues of the free one-dimensional particle and harmonic oscillator. To have a concept of the angular momentum of a three-dimensional particle.
Course Contents

Course Contents

  • Elements of classical mechanics and physical bases of quantum mechanics
  • A finite-dimensional model of quantum mechanics
  • Quantum mechanics of real systems
Assessment Elements

Assessment Elements

  • non-blocking Домашние задания
  • non-blocking Итоговый устный опрос
Interim Assessment

Interim Assessment

  • 2021/2022 2nd module
    0.5 * Домашние задания + 0.5 * Итоговый устный опрос
Bibliography

Bibliography

Recommended Core Bibliography

  • John Archibald Wheeler, & Wojciech Hubert Zurek. (1983). Quantum Theory and Measurement. Princeton University Press.
  • Rivers, R. J. (2012). Path Integrals for (Complex) Classical and Quantum Mechanics. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1202.4117
  • S. J. Gustafson, I. M. Sigal, Mathematical Concepts of Quantum Mechanics / Springer-Verlag Berlin Heidelberg 2011
  • Simon, Barry. Functional Integration and Quantum Physics / Barry Simon. – Academic Press, 1979

Recommended Additional Bibliography

  • Alyssa Ney, David Z Albert, & Craig Callender. (n.d.). eds.) (2013): The wave function: essays in the metaphysics of quantum mechanics.
  • Neumaier, A., & Westra, D. (2008). Classical and Quantum Mechanics via Lie algebras. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.0810.1019
  • Tim Maudlin. (2019). Philosophy of Physics : Quantum Theory. Princeton University Press.
  • Zinn-Justin, J. (2010). Path Integrals in Quantum Mechanics. Oxford: OUP Oxford. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=643992

Authors

  • GALKIN OLEG EVGENEVICH