Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2021/2022

Научно-исследовательский семинар "Гладкие многообразия"

Статус: Курс обязательный (Математика)
Направление: 01.03.01. Математика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 5
Контактные часы: 76

Программа дисциплины

Аннотация

Дисциплина “Гладкие многообразия” посвящена аналитическим и геометрическим аспектом теории гладких многообразий. В результате прохождения курса студенты должны владеть понятиями, изучаемыми в курсе, а также применять их для выполнения операций анализа функций, заданных на многообразии.
Цель освоения дисциплины

Цель освоения дисциплины

  • Освоение аналитических и геометрических аспектов теории гладких многообразий.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знакомство с определением и базовыми свойствами дифференциальных форм в R^n и на поверхностях в R^n. Знакомство с конструкцией разбиения единицы.
  • Знакомство с определением и базовыми свойствами дифференциальных форм на многообразиях. Знакомство с интегрированием дифференциальных форм.
  • Знакомство с определением и основными свойствами когомологий де Рама и доказательством их гомотопической инвариантности. Знакомство с леммой Пуанкаре и ее доказательством.
  • Знакомство с определением и свойствами производной Ли и дифференциальных идеалов.
  • Знакомство с определением многообразий с краем. Знакомство с формулой Стокса и ее следствиями.
  • Знакомство с определением многообразий с помощью атласов, подмногообразий и морфизмов многообразий.
  • Знакомство с тремя определениями касательного вектора. Знакомство с определением дифференциала отображения, векторных полей, касательного расслоения, коммутаторов векторных полей.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Кривые и поверхности в R^n
  • Определение многообразия
  • Касательные пространства и векторные поля
  • Дифференциальные формы на R^n
  • Дифференциальные формы на многообразиях
  • Формула Стокса
  • Когомологии де Рама
  • Производная Ли
  • Векторные расслоения. Тензоры
Элементы контроля

Элементы контроля

  • неблокирующий Сдача листков
  • неблокирующий работа на семинарах, включая контрольные, домашние задания, выступления, отчеты о семинарах
  • неблокирующий Коллоквиумы
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 2 модуль
    min{10;0,6*(оценка за семинары)+0,25*(средняя оценка за коллоквиумы)+0,25*(оценка за листки)}
Список литературы

Список литературы

Рекомендуемая основная литература

  • Математический анализ. Т. 1: ., Зорич, В. А., 2015
  • Математический анализ. Т. 2: ., Зорич, В. А., 2015

Рекомендуемая дополнительная литература

  • Новиков, С. П. Современные геометрические структуры и поля : учебное пособие / С. П. Новиков, И. А. Тайманов. — Москва : МЦНМО, 2005. — 584 с. — ISBN 978-5-94057-102-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9379 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Современные геометрические структуры и поля, Новиков, С. П., 2005

Авторы

  • Хорошкин Сергей Михайлович