Бакалавриат
2021/2022
Алгебра и анализ: вводный курс (базовый уровень)
Статус:
Курс по выбору (Экономика)
Направление:
38.03.01. Экономика
Кто читает:
Департамент математики
Где читается:
Санкт-Петербургская школа экономики и менеджмента
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
3
Контактные часы:
30
Программа дисциплины
Аннотация
Целью освоения дисциплины «Алгебра и анализ: вводный курс(базовый уровень)» является изучение разделов «Множества и отображения», «Векторы », «Прямая линия на плоскости и в пространстве. Плоскость в пространстве», «Комплексные числа» и «Полиномы и рациональные дроби», позволяющие студенту ориентироваться в таких дисциплинах, как «Линейная алгебра», «Математический анализ–I», «Математический анализ–II», «Микроэкономика», «Макроэкономика», «Эконометрика». Курс «Алгебра и анализ: вводный курс (базовый уровень)» будет использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике.
Цель освоения дисциплины
- изучение разделов «Множества и отображения», «Векторы », «Прямая линия на плоскости и в пространстве. Плоскость в пространстве», «Комплексные числа» и «Полиномы и рациональные дроби», позволяющие студенту ориентироваться в таких дисциплинах, как «Линейная алгебра», «Математический анализ–I», «Математический анализ–II», «Микроэкономика», «Макроэкономика», «Эконометрика»
Планируемые результаты обучения
- Анализирует взаимное расположение прямых на плоскости, находит углы между прямыми, точку пересечения прямых, вычисляет расстояния: от точки до прямой, между параллельными прямыми. Используя взаимное расположение прямых, строит уравнение прямой, проходящей параллельно / перпендикулярно / под углом к заданной прямой / к оси координат через фиксированную точку.
- Выполняет операции над множествами (в том числе используя графическое изображение множеств на плоскости).
- Демонстрирует умение представлять правильную рациональную дробь в сумму простейших дробей.
- Знает основные элементарные функции, умеет строить графики элементарных функций с помощью основных преобразований на плоскости.
- Знает свойства модуля, решает уравнения и неравенства с применением свойств модуля.
- Знает свойства скалярного, векторного, смешанного произведений.
- Знает условия коллинеарности, ортогональности и компланарности векторов.
- Находит элементы геометрических фигур (стороны, углы, высоты и т.д.).
- Решает примеры на применение скалярного, векторного и смешанного произведений для нахождения углов между векторами, площадей треугольника и параллелограмма и объемов параллелепипеда и тетраэдра.
- Составляет уравнение плоскости в пространстве (по точке и нормальному вектору, по трём точкам, по точке и двум коллинеарным векторам), уравнение прямой в пространстве (канонические уравнения; параметрические уравнения; прямая, как пересечение плоскостей).
- Составляет уравнение прямой на плоскости (каноническое, общее, в отрезках, параметрическое уравнение, уравнение с угловым коэффициентом, в отрезках, уравнение по двум точкам), умеет переходить от одной формы уравнения к другой.
- Строит композицию отображений, обратное отображение, определяет свойства отображения.
- Умеет находить область определения, множество значений функции, исследовать функцию на монотонность, чётность/нечетность, периодичность.
- Умеет работать с комплексными числами в произвольной форме записи (алгебраическая, тригонометрическая, показательная), решает уравнения и неравенства с комплексными числами и интерпретирует результаты геометрически.
- Выделяет целую часть из рациональной дроби.
- Вычисляет расстояния между объектами в пространстве (от точки до прямой, от точки до плоскости, между прямыми, между плоскостями, от прямой до плоскости).
- Демонстрирует знание концепции уравнения прямой линии на плоскости, умение составить уравнение прямой, построить график прямой линии, применять условия взаимного расположения прямых на плоскости в решении геометрических и экономических задач
- Определяет взаимное расположение двух прямых в пространстве, находит угол между прямыми, знает условие перпендикулярности и параллельности. Анализирует взаимное расположение прямой и плоскости, вычисляет угол между прямой и плоскостью, знает условия перпендикулярности и параллельности, находит точки пересечения прямой и плоскости, двух прямых.
- Производит арифметические операции с комплексными числами, возводит в степень и извлекает корень, интерпретирует результаты геометрически.
- Умеет применять основные операции над векторами к решению практических и геометрических задач (в том числе используя теорему о делении отрезка в заданном отношении).
- Умеет применять теоремы Безу, Декарта к конкретным многочленам, раскладывать многочлены на множители с использованием теоремы о рациональных корнях многочлена.
Содержание учебной дисциплины
- Множества и отображения
- Векторы в R^n
- Прямая линия на плоскости и в пространстве. Плоскость в пространстве
- Комплексные числа
- Полиномы и рациональные дроби
Элементы контроля
- Индивидуальное домашнее задание 1Индивидуальное домашнее задание 1 состоит из задач по теме "Множества и отображения". На выполнение задания дается три дня. При необходимости, выполненная работа сканируется и прикрепляется в SmartLMS. Основной формат сдачи ДЗ — письменно, одновременно может использоваться устный формат сдачи для контроля письменной части. Требования к устной части доводятся до сведения студентов вместе с вариантами ИДЗ посредством корпоративных средств связи.
- Индивидуальное домашнее задание 2Индивидуальное домашнее задание 2 состоит из задач по темам "Комплексные числа" и "Многочлены и рациональные дроби". На выполнение задания дается три дня. При необходимости, выполненная работа сканируется и прикрепляется в SmartLMS. Основной формат сдачи ДЗ — письменно, одновременно может использоваться устный формат сдачи для контроля письменной части. Требования к устной части доводятся до сведения студентов вместе с вариантами ИДЗ посредством корпоративных средств связи.
- Письменный опрос по теме "Множества и отображения"Опрос проводится письменно, в классе. Время выполнения - 30 минут. Может также использоваться устный формат сдачи для контроля письменной части. Требования к устной части доводятся до сведения студентов за неделю до проведения посредством корпоративных средств связи.
- Контрольная работа по теме «Векторная алгебра и аналитическая геометрия»Основной формат сдачи работы — письменно, одновременно может использоваться устный формат сдачи для контроля письменной части. Требования к устной части доводятся до сведения студентов за неделю до проведения посредством корпоративных средств связи. Длительность работы - 80 минут. В дистанционном формате (если применяется) на КР выделяется 80 минут и 10 минут организационные. Работа проводится на платформе Smart LMS с дополнительным использованием платформ Zoom или MS Teams . К занятию, на котором будет проводиться контрольная работа, необходимо подключиться за 15 минут до начала, по сигналу преподавателя приступить к решению заданий в Smart LMS. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, скоростной интернет, поддержка Zoom/MS Teams. Ответы на задания записываются на белых листах А4, черной ручкой, листы нумеруются, при указании в задании ответы дополнительно вводятся в окно ответа. После окончания работы студент должен сфотографировать/отсканировать свое решение и загрузить в Smart LMS. Фотографии должны быть вертикальными, чтобы текст не был размыт и читался однозначно. Ответы и номера заданий нужно выделить . На протяжении работы камера и микрофон должны быть включены. Требуется расположить камеру сбоку или фронтально от себя таким образом, чтобы она была направлена на рабочее поле – лист, на котором выполняется работа, на студента и пространство вокруг студента (помещение должно быть хорошо освещено). Разрешается использовать вход в Zoom / MS Teams с мобильного телефона с его камерой. По требованию преподавателя студент обязан переключиться на трансляцию своего экрана: включить заднюю камеру мобильного телефона или повернуть в течение 5 секунд телефон к экрану компьютера, или запустить демонстрацию экрана. Выходить во время контрольной работы из комнаты нельзя. На столе можно иметь только письменные принадлежности, без пенала, чистые листы бумаги и воду. Наличие каких-либо носителей информации поблизости от рабочего места студента, а также других людей, считается нарушением и заканчивается удалением студента с работы и выставлением оценки «0». Во время контрольной работы студентам запрещено выключать камеру и микрофон: до окончания работы видео и звук должны оставаться активными, включая время на сканирование выполненной работы и отправку ее на проверку. Кратковременным нарушением связи во время контрольной работы считается нарушение связи менее 2 минут и не более одного раза. Долговременным нарушением связи во время контрольной работы считается нарушение от 2 минут и более. При долговременном нарушении связи студент может продолжить участие в написании работы по усмотрению преподавателя.
- ЭкзаменЭкзамен может состоять из двух частей. Часть 1 - письменная работа. Часть 2 - устная часть. В этом случае инструкции к проведению экзамена будут выданы за 2 недели до экзамена.
Промежуточная аттестация
- 2021/2022 учебный год 2 модуль0.1 * Индивидуальное домашнее задание 1 + 0.24 * Контрольная работа по теме «Векторная алгебра и аналитическая геометрия» + 0.44 * Экзамен + 0.12 * Письменный опрос по теме "Множества и отображения" + 0.1 * Индивидуальное домашнее задание 2
Список литературы
Рекомендуемая основная литература
- Ильин В.А., Садовничий В.А., Сендов Б.Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ч. 1 4-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 660с. - ISBN: 978-5-9916-2733-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-ch-1-389342
Рекомендуемая дополнительная литература
- Путко Б.А., Тришин И.М., Кремер Н.Ш. - под ред. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Т. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2016 - 634с. - ISBN: 978-5-9916-6238-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-t-388079