• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2020/2021

Научно-исследовательский семинар "Кластерные многообразия"

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Дисциплина общефакультетского пула
Когда читается: 1, 2 модуль
Язык: английский
Кредиты: 3
Контактные часы: 30

Course Syllabus

Abstract

The theory of electrical networks developed in the work of Ohm and Kirkhoff has been a source of interesting mathematics for almost 200 years. Enumeration on graphs, discrete integrable systems, discrete complex analysis, symplectic geometry are among the areas the electrical networks are connected to. The purpose of the course is to discuss a relatively recent development. It turns out that electrical networks can be viewed as a deformation of another well studied structure, the cluster algebra structure on the classical Lie groups.In particular electrical networks give rise to a Lie group called the Electrical Lie group and it is a deformation of the Unipotant group. As a consequence one gets a non trivial deformation of the cluster algebra structue on the Uniportant group. The theory of total positivity in the Uniportant group also deforms to the Electrical Lie group in an interesting way. Describing these deformations is the main goal of the course. Рrerequisites: Standard courses on linear algebra, analysis and topology.
Learning Objectives

Learning Objectives

  • Цель дисциплины познакомить студентов с основными идеями теории кластерных многообразий
Expected Learning Outcomes

Expected Learning Outcomes

  • Описать положительные унипотентные матрицы в подходе Зелевинского
Course Contents

Course Contents

  • Положительные матрицы
    Описать подход к теории положительных матриц развитый Зелевинским
Assessment Elements

Assessment Elements

  • non-blocking доклад на семинаре
  • non-blocking доклад на семинаре
Interim Assessment

Interim Assessment

  • Interim assessment (2 module)
    0.7 * доклад на семинаре + 0.3 * доклад на семинаре
Bibliography

Bibliography

Recommended Core Bibliography

  • Теория матриц, Гантмахер, Ф. Р., 1988

Recommended Additional Bibliography

  • Введение в алгебру. Ч.2: Линейная алгебра, Кострикин, А. И., 2012