Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2020/2021

Научно-исследовательский семинар "Геометрическое введение в алгебраическую геометрию"

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Дисциплина общефакультетского пула
Когда читается: 1, 2 модуль
Язык: английский
Кредиты: 6
Контактные часы: 60

Course Syllabus

Abstract

Algebraic geometry studies geometric loci looking locally as a solution set for a system of polynomial equations on an affine space. The main feature of this subject is that it provides an algebraic explanation to various geometric properties of the figures and at the same time gives geometric intuition to purely algebraic constructions. It plays an important role in many are as of mathematics and the or etical physics, and provides the most visual and elegant tools to express all aspects of the interaction between different branches of mathematical knowledge. The course gives the flavor of the subject by presenting example sand applications of the ideas of algebraic geometry, as well as a first discussion of its technical tools. Рrerequisites: first year of undergraduate study (algebra, calculus, geometry, topology).
Learning Objectives

Learning Objectives

  • Students will be competent in basic constructions of algebraic geometry that will allow them to start studying more advanced courses in algebraic geometry and apply their knowledge to study the courses like algebraic groups, algebraic curves and surfaces.
Expected Learning Outcomes

Expected Learning Outcomes

  • Students will learn basic constructions, theorems of algebraic geometry. Also they will gain sufficient package of examples of algebraic varieties and the method of their study.
Course Contents

Course Contents

  • Projective spaces. Geometry of projective quadrics. Spaces of quadrics.
  • Lines, conics, and PGL(2). Rational curves and Veronese curves. Plane cubic curves.
  • Grassmannians, Veronese's, and Segre's varieties. Examples of projective maps coming from tensor algebra.
  • Elements of commutative algebra: Integer elements in ring extensions, finitely generated algebras over a field, transcendence generators, Hilbert's theorems.
  • Affine Algebraic Geometry - Commutative Algebra dictionary. Maximal spectrum, pullback morphisms, Zariski topology, geometry of ring homomorphisms.
  • Agebraic manifolds, separateness. Irreducible decomposition. Projective manifolds, properness. Rational functions and maps.
  • Dimension. Dimensions of subvarieties and fibers of regular maps. Dimensions of projective varieties.
  • Vector bundles and their sheaves of sections. Vector bundles on the projective line. Linear systems, invertible sheaves, and divisors. The Picard group.
Assessment Elements

Assessment Elements

  • non-blocking Solutions of problems from home task sheets
    Written solutions
  • non-blocking Final exam
    Written exam
Interim Assessment

Interim Assessment

  • Interim assessment (2 module)
    0.5 * Final exam + 0.5 * Solutions of problems from home task sheets
Bibliography

Bibliography

Recommended Core Bibliography

  • Alexey L. Gorodentsev. Algebra II: Textbook for Students of Mathematics. Springer, 2017. ISBN: 9783319508535,3319508539
  • Igor R. Shafarevich Basic Algebraic Geometry 1 Varieties in Projective Space, Springer, 2013.

Recommended Additional Bibliography

  • Igor R. Shafarevich. Basic Algebraic Geometry 2 Schemes and Complex Manifolds, Springer, 2013