2020/2021
Научно-исследовательский семинар "Элементарное введение в теорию автоморфных форм"
Статус:
Дисциплина общефакультетского пула
Кто читает:
Факультет математики
Где читается:
Факультет математики
Когда читается:
3, 4 модуль
Преподаватели:
Левин Андрей Михайлович
Язык:
английский
Кредиты:
3
Контактные часы:
36
Course Syllabus
Abstract
The automorphic forms in rather misterious way appear in different branches of mathematics from number theory to mathematical physics. At the other hand, the technique of this theory includes methods from various parts of mathematics like complex analysis, topology, differential geometry, Lie groups theory, number theory. Nevertheless, the main notions and concepts of this deep theory can be illustrated without use of comlicated tools.
Learning Objectives
- Demonstration of the unity of the mathematics as science.Study theory of modularar forms in one variable with application to number theory and mathematical physics. Exploring the Eisenstein construction of trigonometric and elliptic functions. Realization quadratic divisors as the Hilbert surfaces in the Siegel 3-fold.
Expected Learning Outcomes
- Creating the vision of mathematics as unified science and interrelations between its different bruches.
- Realization of the technique of the universal object in the description of configuration of points in a linear space.
- Realization of the concept of compactification for explicit example.
- Demonstration of possible variability of the basic defenition for adoption to explicit problems.
- Demonstration of the averaging method in different contexts.
- Application of the group-theoretic constructions in geometry.
- Introduction to the basic theory of geometric groups.
Course Contents
- Elliptic Integrals and Elliptic Functions.Elliptic Functions as invertions of multi-valued integrals with geometrical and physical motivation.
- 2-Lattices in the Complex Plane.2-Lattices as periods of the elliptic functions. Description of framed lattices as points of the upper half-plane. Cange of framing and action of the group of the integer unimodular matrices. The modular set and the modular figure.
- Degeneration of the Lattices and Comactification.Degeneration of the lattices and rational points oe the projective line. Cusp points and comactification of the modular set.
- Modular Forms in One VariableHomogeneous functions of latticis and automorphic forms. Development in the neighbourhood of the compactification point.
- The Eisenstein SeriesTwo realization of the Eisenstein series: via latticis and group-theoretical approuch. Deduction of the development near cusp from the Eisenstein construction of the trigonometric functions.
- Double coset constructionTransitivity of the action of the real unimodular on the upper half-plane. The orthoganal group as the stabilizer of the point i. Modular set as double coset. Interpretation of automorphic forms.
- Automorphic Triples of GroupsTopologic groups and Lie groups. Classification of the Lie groups. Examples: classical groups. Discrete and compact subgroups: integer classical groups and orthoganal groups.
Bibliography
Recommended Core Bibliography
- Абелевы многообразия, Мамфорд, Д., 1971
- Группы и алгебры Ли : алгебры Ли, свободные алгебры Ли и группы Ли, Бурбаки, Н., 1976
Recommended Additional Bibliography
- Группы и алгебры Ли : группы Кокстера и системы Титса. Группы, порожденные отражениями системы корней, Бурбаки, Н., 1972
- Группы и алгебры Ли : подалгебры Картана, регулярные элементы, расщепляемые полупростые алгебры Ли, Бурбаки, Н., 1978