• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2022/2023

Обработка и анализ данных физического эксперимента

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Физика)
Направление: 03.03.02. Физика
Кто читает: Факультет физики
Где читается: Факультет физики
Когда читается: 2-й курс, 3, 4 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 10
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 84

Программа дисциплины

Аннотация

Курс «Обработка и анализ данных физического эксперимента» посвящен основным методам и подходам, применяемым в современной физике для обработки и анализа данных экспериментов. В рамках курса, изучаемые методы и подходы реализуются в виде программ для ЭВМ с использованием языка Python, что позволяет сформировать практические навыки обработки и анализа данных в современном эксперименте, обладающим высокой степенью автоматизации. Результатом освоения курса является формирование базовых представлений об основных методах обработки экспериментальных данных, базовых навыков построения математических моделей для анализа данных экспериментов, навыков использования языка Python и библиотек numpy, scipy, sklearn, базовых навыков применения машинного обучения для для анализа данных физического эксперимента. Курс предполагает базовые знания основных физических законов и явлений, теории вероятности и статистики, и начальные навыки программирования на языке Python. Курс предназначен для студентов бакалавриата образовательной программы Физика.
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование у студентов базовых знаний об основных методах обработки экспериментальных физических данных;
  • формирование у студентов знаний по теоретическим основам статистических методов обработки и анализа данных;
  • формирование у студентов навыков применения методов машинного обучения для анализа данных физического эксперимента;
  • формирование навыков работы с научными библиотеками языка Python: numpy, scipy, sklearn.
Планируемые результаты обучения

Планируемые результаты обучения

  • знает и умеет применять : хранение данных в виде текстовых файлов. Хранение данных в виде бинарных файлов. Системы контроля версий. Git и основы работы с ним
  • знает и умеет применять линейный и нелинейный метод наименьших квадратов.
  • знает принцип максимального правдоподобия. Оценка функции правдоподобия в моделях со скрытыми параметрами, EM-алгоритм
  • имеет навыки моделирование методом Монте-Карло с помощью Марковских цепей (MCMC).
  • умеет обрабатывать шумовые сигналы
  • умеет оценивать параметры статистического распределения из набора экспериментальных данных
  • умеет применять детерминистические методы оптимизации и метод крыловских подпространств: метод сопряженных градиентов и его модификации.
  • умеет применять методы машинного обучения для решения задач обработки научных данных
  • умеет применять оптимизация с ограничениями, метод множителей Лагранжа, линейное программирование, симплекс-метод.
  • умеет работать с системами с общей памятью.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Обзор форматов научных данных и основных способов хранения данных
  • Распределенная обработка данных
  • Применение методов оптимизации к анализу экспериментальных данных
  • Обработка экспериментальных данных
  • Работа со статистическими распределениями.
  • Применение методов машинного обучения для анализа физических данных
Элементы контроля

Элементы контроля

  • неблокирующий Практические задания
  • неблокирующий Самостоятельные работы
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 4 модуль
    0.3 * Экзамен + 0.6 * Самостоятельные работы + 0.1 * Практические задания
Список литературы

Список литературы

Рекомендуемая основная литература

  • Andrew Bird, Dr Lau Cher Han, Mario Corchero Jiménez, Graham Lee, & Corey Wade. (2019). The Python Workshop : A New, Interactive Approach to Learning Python. Birmingham: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2291496
  • S.L. Hamilton. (2019). Pythons. [N.p.]: A&D Xtreme. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1729879
  • Toby Donaldson. (2013). Python : Visual QuickStart Guide. [N.p.]: Peachpit Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1600205
  • Сухарев, А. Г. Курс методов оптимизации : учебное пособие / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. — 2-е изд. — Москва : ФИЗМАТЛИТ, 2011. — 384 с. — ISBN 978-5-9221-0559-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2330 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Romano, F. (2015). Learning Python. Birmingham: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1133614
  • Фролов А.Н. - Краткий курс теории вероятностей и математической статистики - Издательство "Лань" - 2017 - 304с. - ISBN: 978-5-8114-2460-3 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/93706

Авторы

  • Мамонов Евгений Александрович
  • Корнилов Матвей Викторович