Бакалавриат
2022/2023
Математический анализ 1
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Экономика)
Направление:
38.03.01. Экономика
Кто читает:
Департамент математики
Где читается:
Факультет экономических наук
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
9
Контактные часы:
110
Программа дисциплины
Аннотация
Дисциплина «Математический анализ-1» предназначена для студентов 1-го курса бакалавриата, обучающихся по направлению 38.03.01 «Экономика», образовательная программа «Экономика». Формат изучения дисциплины - без использования онлайн курса. В дисциплине студенты познакомятся с базовыми знаниями теории пределов и непрерывных функций и дифференциального исчисления функций одной и многих переменных. Материал иллюстрирован экономическими примерами.
Цель освоения дисциплины
- Добиться усвоения студентами теоретических основ, базовых результатов и теорем математического анализа, а также основных математических приемов и правил формального анализа и решения различных математических задач на основе полученных теоретических знаний
- Подготовить слушателей к чтению современных текстов по экономической теории, использующих модели и методы многомерного математического анализа
- Обеспечить запросы других разделов математики, использующих возникающие в математическом анализе конструкции
- Научить слушателей давать оценку предельного поведения различных функций
- Продемонстрировать возможность исследования зависимости экстремумов от параметров
- Выработать у слушателей навыки решения типовых задач, способствующих усвоению основных понятий, а также задач, способствующих развитию начальных навыков научного исследования
- Развить умение логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий и символов для выражения количественных и качественных отношений
Планируемые результаты обучения
- Cтудент дифференцирует элементарные функции и приобретает навыки использования свойств дифференцируемых функций.
- Cтудент приобретает навыки использования свойств непрерывных функций.
- Студент вычисляет пределы функций и последовательностей.
- Студент вычисляет пределы функций нескольких переменных и приобретает навыки использования свойств непрерывных функций нескольких переменных.
- Студент вычисляет производные высших порядков, применяет необходимое условие экстремума, приобретает навыки использования формулы Тейлора.
- Студент вычисляет частные производные высших порядков, устанавливает достаточные условия экстремума, приобретает навыки использования формулы Тейлора для функций нескольких переменных.
- Студент классифицирует числовые множества и функции и выполняет основные операции над ними.
Содержание учебной дисциплины
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 1. Множества и функции.
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 2. Пределы.
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 3. Непрерывность.
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 4. Операция дифференцирования и свойства дифференцируемых функций.
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 5. Производные высших порядков, формула Тейлора, достаточные условия экстремума.
- Тема 1. Непрерывные и дифференцируемые функции одной переменной. Раздел 6. Исследование функций. Графики функций.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 1. Множество R^n и его подмножества. Скалярные и векторные функции.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 2. Пределы и непрерывность функций.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 3. Дифференцирование функций. Необходимое условие экстремума.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 4. Частные производные высших порядков. Формула Тейлора. Достаточное условие экстремума.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 5. Неявно заданные отображения. Локальная обратимость. Зависимость систем числовых функций.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 6. Условный экстремум. Зависимость экстремумов от параметров. Однородные функции. Экономические приложения.
- Тема 2. Непрерывные и дифференцируемые функции нескольких переменных. Раздел 6. Условный экстремум. Зависимость экстремумов от параметров. Однородные функции. Экономические приложения
Элементы контроля
- Участие в дискуссиях на семинарах
- Контрольная работа №1Длительность проведения контрольной - 80 минут. Контрольная работа состоит из 6 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
- ЭкзаменДлительность проведения экзамена - 100 - 160 минут (точная продолжительность экзамена сообщается студентам заранее). Экзаменационная работа состоит из 8 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
- Контрольная работа №2Длительность проведения контрольной - 80 минут. Контрольная работа состоит из 6 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
- Индивидуальное домашнее задание
Промежуточная аттестация
- 2022/2023 учебный год 2 модуль0.4 * Экзамен + 0.1 * Участие в дискуссиях на семинарах + 0.2 * Контрольная работа №1 + 0.1 * Индивидуальное домашнее задание + 0.2 * Контрольная работа №2
Список литературы
Рекомендуемая основная литература
- Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И. - Сборник задач по математическому анализу. Том 2. Интегралы. Ряды - Издательство "Физматлит" - 2009 - ISBN: 978-5-9221-0307-7 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/2227
- Курс математического анализа : учебное пособие / А.М. Тер-Крикоров, М.И. Шабунин, 2-е изд. - Москва : ФИЗМАТЛИТ, 2001. - 669 с. ISBN 5-9221-0008-3 - Текст : электронный. - URL: http://znanium.com/catalog/product/544563
- Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров, А. М., 2000
- Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович, Б. П., 2003
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. . — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 3 : Функции нескольких переменных — 2003. — 472 с. — ISBN 5-9221-0308-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2220 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. и доп. — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 1 : Предел. Непрерывность. Дифференцируемость — 2010. — 496 с. — ISBN 978-5-9221-0306-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2226 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Тер-Крикоров, А. М. Курс математического анализа : учебное пособие / А. М. Тер-Крикоров, М. И. Шабунин. — 2-е изд. — Москва : ФИЗМАТЛИТ, 2001. — 672 с. — ISBN 5-9221-0008-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/59258 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Jacques, I. (2015). Mathematics for Economics and Business (Vol. 8th ed). Harlow: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1419610
- Sydsæter, K., & Hammond, P. J. (2016). Essential Mathematics for Economic Analysis (Vol. Fifth edition). Harlow, United Kingdom: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1419812
- Takayama,Akira. (1985). Mathematical Economics. Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.cup.cbooks.9780521314985
- Линейная алгебра, дифференциальное исчисление функций одной переменной : учебник для вузов, Бурмистрова, Е. Б., 2010
- Математические методы оптимизации и экономическая теория, Интрилигатор, М., 2002
- Математический анализ и дифференциальные уравнения : учебник для вузов, Бурмистрова, Е. Б., 2010