• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Методы машинного обучения в биоинформатике

Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 1-й курс, 1, 2 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 14
Охват аудитории: для своего кампуса
Преподаватели: Попцова Мария Сергеевна, Федоров Александр Николаевич
Прогр. обучения: Анализ данных в биологии и медицине
Язык: английский
Кредиты: 6
Контактные часы: 56

Course Syllabus

Abstract

The course introduces the theory and practice of machine learning algorithms and their applications in the area of bioinformatics. The students will learn data preprocessing techniques, methods of dimension reduction, technique of modeling using machine-learning algorithms, parameter tuning. The studied algorithms include linear regression with regularization (ridge regression, elastic net, lasso), multivariate adaptive regression splines, support vector machines, neural networks, k-nearest neighbors, classification and regression trees, random forest, gradient boosting. Workshops, which follow the lectures, seek to empower students with the practical skills in predictive modeling software tools, packages and applications. Many case studies of predictive models for bioinformatics data sets will be considered.