Бакалавриат
2022/2023
Математический анализ
Статус:
Курс обязательный (Инфокоммуникационные технологии и системы связи)
Направление:
11.03.02. Инфокоммуникационные технологии и системы связи
Кто читает:
Департамент прикладной математики
Когда читается:
1-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для всех
Преподаватели:
Акбаров Сергей Саидмузафарович,
Арбузова Анна Михайловна,
Волкова Татьяна Викторовна,
Грачев Денис Александрович,
Королева Юлия Олеговна,
Марон Аркадий Исаакович,
Михайлова Светлана Олеговна,
Островский Всеволод Петрович,
Петропавловский Сергей Владимирович,
Рахель Марк Анатольевич
Язык:
русский
Кредиты:
12
Контактные часы:
188
Программа дисциплины
Аннотация
Математический анализ является одной из базовых математических дисциплин. В данном курсе вы познакомитесь с анализом функций одной и многих переменных, с классическим дифференциальным и интегральным исчислением. Настоящая дисциплина относится к циклу математических и естественнонаучных дисциплин и блоку дисциплин, обеспечивающих базовую подготовку. Знания и навыки, приобретенные на математическом анализе, необходимы для успешного освоения большинства дисциплин профессионального цикла. Изучение данной дисциплины базируется на знаниях и умениях, приобретённых в рамках школьной программы по математике. Для освоения учебной дисциплины от студентов не требуется знаний и умений, выходящих за рамки школьной программы.
Цель освоения дисциплины
- Ознакомление студентов с основными понятиями и методами теории пределов, дифференциального и интегрального исчисления функций одного и нескольких действительных переменных
- Ознакомление студентов с основными понятиями и методами теории пределов, дифференциального и интегрального исчисления функций одного и нескольких действительных переменных;
- Формирование естественнонаучного мировоззрения и развитие системного мышления, содействие фундаментализации образования.
- Формирование естественнонаучного мировоззрения и развитие системного мышления.
Планируемые результаты обучения
- Студент должен иметь навыки использования стандартных методов и моделей математического анализа и их применения к решению прикладных задач.
- Студент должен знать основные положения теории пределов и непрерывных функций, теории числовых и функциональных рядов, теории интегралов, зависящих от параметра, теории неявных функций и её приложений к задачам на условный экстремум, теории поля, основные теоремы дифференциального и интегрального исчисления функций одного и нескольких переменных.
- Студент должен знать: основные понятия и результаты теории пределов и непрерывных функций, теории числовых и функциональных рядов, теории интегралов, зависящих от параметра, теории неявных функций и её приложений к задачам на условный экстремум, теории поля; основные теоремы и методы дифференциального и интегрального исчисления функций одного и нескольких переменных.
- Студент должен иметь навыки использования стандартных методов и моделей математического анализа и их применения к решению прикладных задач.
- Студент должен уметь определять возможности применения теоретических положений и методов математического анализа для постановки и решения конкретных прикладных задач, решать основные задачи, требующие вычисления пределов функций, производных и интегралов, разложения функций в ряды.
- Студент должен уметь: определять возможности применения теоретических положений и методов математического анализа для постановки и решения конкретных прикладных задач; решать основные задачи на вычисление пределов функций, их дифференцирование и интегрирование, на вычисление интегралов, на разложение функций в ряды.
Содержание учебной дисциплины
- Предел последовательности.
- Криволинейные и поверхностные интегралы
- Непрерывность функции и ее предел
- Элементы теории поля
- Производная функции одной переменной
- Дифференциальное и интегральное исчисление функций нескольких переменных.
- Интеграл
- Дифференциальные уравнения
- Асимптотические методы
- Несобственные интегралы
- Евклидовы пространства и гладкие функции на них.
- Числовые ряды
- Кратные интегралы
- Функциональные последовательности, ряды и аппроксимация
- Степенные ряды
- Тригонометрические ряды
- Множества и их отображения. Действительные числа. Числовые функции.
Элементы контроля
- Контрольная N1 модуль 1
- Контрольная N2 модуль 2
- Коллоквиум
- Контрольная N3 модуль 3
- Контрольная N4 модуль 3
- Контрольная N5 модуль 4
- Контрольная N6 модуль 5
- Контрольная N7 модуль 5
- Экзамен N1
- Экзамен N2
- Экзамен N3
- Контрольная N8 модуль 6
Промежуточная аттестация
- 2022/2023 учебный год 2 модуль0.5 * Экзамен N1 + 0.16 * Контрольная N1 модуль 1 + 0.16 * Контрольная N2 модуль 2 + 0.18 * Коллоквиум
- 2022/2023 учебный год 4 модуль0.5 * Экзамен N2 + 0.17 * Контрольная N4 модуль 3 + 0.17 * Контрольная N5 модуль 4 + 0.16 * Контрольная N3 модуль 3
- 2023/2024 учебный год 2 модуль0.5 * Экзамен N3 + 0.16 * Контрольная N6 модуль 5 + 0.17 * Контрольная N7 модуль 5 + 0.17 * Контрольная N8 модуль 6
Список литературы
Рекомендуемая основная литература
- Кудрявцев Л.Д. - КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА В 3 Т. ТОМ 2 В 2 КНИГАХ 6-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 720с. - ISBN: 978-5-9916-6126-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-2-v-2-knigah-387530
- Кудрявцев, Л. Д. Курс математического анализа в 3 т. Том 1 : учебник для бакалавров / Л. Д. Кудрявцев. — 6-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2019. — 703 с. — (Бакалавр. Академический курс). — ISBN 978-5-9916-3701-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/425369 (дата обращения: 28.08.2023).
- Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров, А. М., 2000
- Лекции по теории обыкновенных дифференциальных уравнений : учебник для мех.-мат. фак. ун-тов, Петровский, И. Г., 1970
- Основы математического анализа. Т.1: ., Фихтенгольц, Г. М., 2001
- Основы математического анализа. Т.2: ., Фихтенгольц, Г. М., 2001
- Тер-Крикоров, А. М. Курс математического анализа : учебное пособие / А. М. Тер-Крикоров, М. И. Шабунин. — 2-е изд. — Москва : ФИЗМАТЛИТ, 2001. — 672 с. — ISBN 5-9221-0008-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/59258 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И. - Сборник задач по математическому анализу. Том 2. Интегралы. Ряды - Издательство "Физматлит" - 2009 - ISBN: 978-5-9221-0307-7 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/2227
- Поспелов А.С. - Отв. ред. - СБОРНИК ЗАДАЧ ПО ВЫСШЕЙ МАТЕМАТИКЕ. Ч. 1. Учебное пособие для бакалавров - М.:Издательство Юрайт - 2016 - 605с. - ISBN: 978-5-9916-8168-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/sbornik-zadach-po-vysshey-matematike-ch-1-393226
- Сборник задач и упражнений по математическому анализу : учеб. пособие для вузов, Демидович, Б. П., 2003
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. . — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 3 : Функции нескольких переменных — 2003. — 472 с. — ISBN 5-9221-0308-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2220 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. и доп. — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 1 : Предел. Непрерывность. Дифференцируемость — 2010. — 496 с. — ISBN 978-5-9221-0306-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2226 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.