• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Машинное обучение

Статус: Курс обязательный (Финансовые технологии и анализ данных)
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 1-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Финансовые технологии и анализ данных
Язык: русский
Кредиты: 6
Контактные часы: 56

Программа дисциплины

Аннотация

Теория обучения машин (machine learning, машинное обучение) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 50 лет оформилась в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining). В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами. Все методы излагаются по единой схеме: исходные идеи и эвристики; их формализация и математическая теория; описание алгоритма в виде слабо формализованного псевдокода; анализ достоинств, недостатков и границ применимости; пути устранения недостатков; сравнение с другими методами. примеры прикладных задач.