• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2022/2023

Теория вероятностей и математическая статистика

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Прикладная математика и информатика)
Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 2-й курс, 3, 4 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 20
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 10
Контактные часы: 144

Программа дисциплины

Аннотация

Дисциплина базовой части профессионального цикла. Данная дисциплина служит основой для профессиональной ориентации студентов при выборе дисциплин из вариативной части Программы. Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков по основам теории вероятностей и математической статистике как основного математического аппарата для построения моделей случайных явлений, освоение методов математического моделирования и анализа таких явлений. Для освоения дисциплины студентам необходимо иметь знания, полученные в результате освоения дисциплин «Математический анализ 2», «Алгебра».
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов теоретических знаний и практических навыков по основам теории вероятностей и математической статистике как основного математического аппарата для построения моделей случайных явлений, освоения методов математического моделирования и анализа таких явлений.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знает основные понятия и факты теории вероятностей и математической статистики, такие, как вероятностное пространство, случайные величины, виды сходимости последовательностей случайных величин, выборка, оценки параметров, статистические критерии.
  • Умеет вычислять числовые характеристики случайных величин, применять предельные теоремы теории вероятностей, находить предельное распределение марковских цепей, строить точечные и интервальные оценки параметров распределений.
  • Имеет опыт использования статистических методов для решения задач оценивания параметров и проверки гипотез.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Элементарная теория вероятностей
  • Раздел 2. Общая теория вероятностей
  • Раздел 3. Метод характеристических функций
  • Раздел 4. Случайные процессы
  • Раздел 5. Оценивание параметров распределений
  • Раздел 6. Линейные статистические модели
  • Раздел 7. Проверка статистических гипотез
  • Раздел 8. Прикладные аспекты теории вероятностей и математической статистики
Элементы контроля

Элементы контроля

  • блокирующий Контрольная работа
    Контрольная работа проводится в письменной форме. Каждый студент получает список из 5 задач. Для получения положительной оценки он должен решить не менее трех из них. На проведение работы отводится 1,5 часа.
  • неблокирующий Домашнее задание №2
    Домашнее задание №2 выдается студентам в одном варианте и состоит из 7 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • блокирующий Экзамен №1
    Письменный экзамен №1 проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет содержит два вопроса из перечня вопросов к экзамену. На подготовку ответа выделяется 2,5 часа.
  • неблокирующий Домашнее задание №3
    Домашнее задание No3 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • неблокирующий Домашнее задание №4
    Домашнее задание №4 выдается студентам в одном варианте и состоит из 6 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • блокирующий Экзамен №2
    Письменный экзамен №2 проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет содержит два вопроса из перечня вопросов к экзамену. На подготовку ответа выделяется 2,5 часа.
  • неблокирующий Домашнее задание №1
    Домашнее задание №1 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 4 модуль
    0.25 * Домашнее задание №2 + 0.2 * Контрольная работа + 0.3 * Экзамен №1 + 0.25 * Домашнее задание №1
  • 2023/2024 учебный год 2 модуль
    0.5 * Экзамен №2 + 0.25 * Домашнее задание №4 + 0.25 * Домашнее задание №3
Список литературы

Список литературы

Рекомендуемая основная литература

  • Попов, А. М.  Теория вероятностей и математическая статистика : учебник для среднего профессионального образования / А. М. Попов, В. Н. Сотников ; под редакцией А. М. Попова. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2021. — 434 с. — (Профессиональное образование). — ISBN 978-5-534-01058-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/469686 (дата обращения: 28.08.2023).
  • Теория вероятностей и математическая статистика : учебник / Е.С. Кочетков, С.О. Смерчинская, В.В. Соколов. — 2-е изд., испр. и перераб. — Москва : ФОРУМ : ИНФРА-М, 2020. — 240 с. — (Среднее профессиональное образование). - Текст : электронный. - URL: http://znanium.com/catalog/product/1059112
  • Теория вероятностей с примерами и задачами: Учебное пособие / Ананьевский С.М., Невзоров В.Б. - СПб:СПбГУ, 2013. - 240 с.: ISBN 978-5-288-05491-4 - Режим доступа: http://znanium.com/catalog/product/940734

Рекомендуемая дополнительная литература

  • Калинина, В. Н.  Теория вероятностей и математическая статистика : учебник для вузов / В. Н. Калинина. — 2-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 472 с. — (Высшее образование). — ISBN 978-5-534-02471-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468770 (дата обращения: 28.08.2023).
  • Малугин, В. А.  Теория вероятностей и математическая статистика : учебник и практикум для среднего профессионального образования / В. А. Малугин. — Москва : Издательство Юрайт, 2021. — 470 с. — (Профессиональное образование). — ISBN 978-5-534-06572-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/473494 (дата обращения: 28.08.2023).

Авторы

  • Храбров Александр Игоревич
  • Спицина Кристина Станиславовна
  • Кузнецов Антон Михайлович