Бакалавриат
2022/2023
Математический анализ I
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс по выбору (Международный бакалавриат по бизнесу и экономике)
Направление:
38.03.01. Экономика
Кто читает:
Департамент математики
Где читается:
Санкт-Петербургская школа экономики и менеджмента
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
6
Контактные часы:
140
Программа дисциплины
Аннотация
Целью освоения дисциплины «Математический анализ» является изучение разделов «Пределы функций», «Дифференциальное исчисление», «Интегральное исчисление», «Числовые и функциональные ряды» и «Дифференциальные уравнения и системы дифференциальных уравнений», позволяющие студенту ориентироваться в таких дисциплинах, как «Теория вероятностей и математическая статистика», «Методы оптимальных решений – I», «Методы оптимальных решений – II», «Микроэкономика», «Макроэкономика», «Теория игр», «Эконометрика». Курс "Математический анализ"; будет использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования.
Цель освоения дисциплины
- Целью освоения дисциплины «Математический анализ I» является изучение начального курса математического анализа, который включает базовые разделы: «Основы теории множеств», «Пределы функций», «Дифференциальное исчисление. Курс «Математический анализ I» будет в дальнейшем использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является теоретическим и модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования
Планируемые результаты обучения
- демонстрирует знание базовых понятий теории множеств и операций над ними, основных функций и их свойств, умение строить, в том числе с помощью простейших преобразований, графики функций, работать с множествами, знание понятий обратная функция, композиция функций
- демонстрирует знание понятий предела функции, непрерывности функции, умение вычислять пределы, исследовать функцию на непрерывность
- демонстрирует умение дифференцировать функции, вычислять пределы функций с помощью производной, исследовать функции и строить их графики с помощью производных
- демонстрирует умение работать с функциями нескольких переменных – находить ООФ, линии и поверхности уровня
- демонстрирует умение работать с функциями нескольких переменных – находить ООФ, находить экстремум функции
- демонстрирует умение работать с функциями нескольких переменных –решать задачи на нахождение частых производных 1-го и 2-го порядков, экстремумов ФНП, вычислять производную по направлению и градиент функции
- Демонстрирует умение выделять главную часть функции в окрестности точки с помощью формулы Тейлора, применяет к вычислению пределов и составляет асимптотические формулы в окрестности точки.
- Линеаризует произвольное отображение из R^n в R^m в окрестности точки.
- Умеет находить матрицу Якоби для композиций отображений., включая неявные функции и системы неявных функций.
- Умеет составлять уравнения касательных, нормалей ,касательных плоскостей и нормальных плоскостей к поверхности в R^n.
- Умеет дифференцировать вектор-функции, находить скалярное ,векторное и смешанное произведение вектор-функций и их производные.
Содержание учебной дисциплины
- Введение. Элементы теории множеств и функций
- Предел и непрерывность функции одной переменной
- Дифференцируемые функции одной переменной
- Множества точек и последовательности в n-мерном пространстве
- Функции нескольких переменных
- Дифференцируемые функции нескольких переменных
- Факультативные семинары
Элементы контроля
- Контрольная работа 3Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
- Самостоятельная работаКонтрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
- ЭкзаменЭкзамен проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Требования к проведению экзамена в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
- Контрольная работа 1Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
- Контрольная работа 2Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
- Индивидуальное домашнее задание
Промежуточная аттестация
- 2022/2023 учебный год 2 модуль0.08 * Индивидуальное домашнее задание + 0.06 * Самостоятельная работа + 0.15 * Контрольная работа 2 + 0.17 * Контрольная работа 1 + 0.15 * Контрольная работа 3 + 0.39 * Экзамен
Список литературы
Рекомендуемая основная литература
- Ильин В.А., Садовничий В.А., Сендов Б.Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ч. 1 4-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 660с. - ISBN: 978-5-9916-2733-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-ch-1-389342
- Кудрявцев Л.Д. - КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА В 3 Т. ТОМ 2 В 2 КНИГАХ 6-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 720с. - ISBN: 978-5-9916-6126-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-2-v-2-knigah-387530
Рекомендуемая дополнительная литература
- Путко Б.А., Тришин И.М., Кремер Н.Ш. - под ред. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Т. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2016 - 634с. - ISBN: 978-5-9916-6238-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-t-388079
- Шипачев В.С. - ВЫСШАЯ МАТЕМАТИКА. ПОЛНЫЙ КУРС 4-е изд., испр. и доп. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2016 - 607с. - ISBN: 978-5-9916-4358-0 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/vysshaya-matematika-polnyy-kurs-388659