• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Методы практического машинного обучения для работы с данными

Статус: Курс обязательный (Менеджмент и аналитика для бизнеса)
Направление: 38.04.02. Менеджмент
Когда читается: 1-й курс, 3, 4 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 24
Охват аудитории: для своего кампуса
Прогр. обучения: Менеджмент и аналитика для бизнеса
Язык: английский
Кредиты: 6
Контактные часы: 48

Course Syllabus

Abstract

During this practically oriented data science module students will learn how machine learning uses computers to run predictive models. The main principal is to explore existing data to build new knowledge, forecast future behaviour, anticipate outcomes and trends. Explore theory and practice, and work with tools like R and Python to solve advanced data science problems.
Learning Objectives

Learning Objectives

  • Choose methods adequately corresponding to the objectives of a research project
  • Collect, store, process and analyze data automatically with the use of scripting languages according to high standards
  • Conduct empirical research in management and marketing using modern analytic software tools
  • Develop and apply new research methods of basic machine learning algorithms and ways to collect information using data mining techniques
  • Solve economic and managerial problems using best practices of data analysis using modern computational tools
  • Able to choose tools, modern technical means and information technologies for processing information in accordance with the assigned scientific task in the field of management
  • Can identify the data needed for addressing the management and business objectives; to collect data and process it
Expected Learning Outcomes

Expected Learning Outcomes

  • Choose methods adequately corresponding to the objectives of a research project
  • Able to choose tools, modern technical means and information technologies for processing information in accordance with the assigned scientific task in the field of management
  • Collect, store, process and analyze data automatically with the use of scripting languages according to high standards
  • Conduct empirical research in management and marketing using modern analytic software tools
  • Develop and apply new research methods of basic machine learning algorithms and ways to collect information using data mining techniques
  • Solve economic and managerial problems using best practices of data analysis using modern computational tools
Course Contents

Course Contents

  • Introduction to Data Science
  • Data Sources and Data Structures
  • Data Collection and Data Processing
  • Machine Learning Algorithms
  • Practical Use of ML Algorithms
Assessment Elements

Assessment Elements

  • non-blocking Online-test
  • non-blocking Individual homework
  • non-blocking Individual seminar coding tasks
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2022/2023 4th module
    0.1 * Individual seminar coding tasks + 0.3 * Individual homework + 0.3 * Exam + 0.3 * Online-test
Bibliography

Bibliography

Recommended Core Bibliography

  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)

Recommended Additional Bibliography

  • Cirillo, A. (2017). R Data Mining. Birmingham, UK: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=nlebk&AN=1643003

Authors

  • Кузнецова Мария Дмитриевна
  • BUDKO VIKTORIYA ALEKSANDROVNA
  • VASILEVA EVGENIYA EDUARDOVNA
  • TERNIKOV ANDREY ALEKSANDROVICH
  • ZAZDRAVNYKH EVGENIY ALEKSANDROVICH