Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2022/2023

Введение в коммутативную алгебру

Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6
Контактные часы: 72

Course Syllabus

Abstract

At its most basic level, algebraic geometry is the study of the geometry of solution sets of polynomial systems of equations. Classically, the coefficients of the polynomial equations are assumed to lie in an algebraically closed field. Considering more general coefficient rings, in particular rings of integers in number fields, one arrives at modern algebraic geometry and algebraic number theory. Commutative algebra provides the tools for answering basic questions about solutions sets of polynomial systems, such as finite gen- eration of the system, existence of solutions in some extension of the coefficient ring, dimension and irreducible components, and smoothness and singularities.