2022/2023
Управление данными
Лучший по критерию «Новизна полученных знаний»
Статус:
Маго-лего
Когда читается:
3, 4 модуль
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
6
Контактные часы:
40
Программа дисциплины
Аннотация
Программа демонстрирует возможности, которые предоставляет анализ данных для принятия управленческих решений в сферах управления бизнес-процессами, маркетинга, анализа продуктовых и клиентских рынков, управления социальной средой организации. Студенты не только исследуют возможности организационного развития на основе анализа объективных данных, но и выполнят собственные аналитические проекты в контексте ряда управленческих задач. Курс включает ряд разноплановых бизнес-кейсов для самостоятельной практической работы. Студенты знакомятся и практикуются работать в ряде сред: используются средства Excel, R, SPSS, Python.
Цель освоения дисциплины
- Получить представление о возможностях анализа данных для принятия управленческих решений, сформировать представление о требованиях к сбору и обработке данных, научиться самостоятельно производить анализ данных и их интерпретацию в контексте управленческих задач
Планируемые результаты обучения
- Студенты изучат типы данных
- Студенты научатся выполнять предобработку данных средствами MS Excel
- Студенты научатся применять для принятия управленческих задач описательные статистики
- Студенты научатся формировать требования к сбору данных и формированию базы данных в зависимости от планируемых задач
- Студенты научатся формировать требования к формированию баз данных в зависимости от планируемых задач
- Студенты научатся формулировать и проверять исследовательские гипотезы в контексте задач принятия управленческих решений
- Студенты познакомятся и сформируют первичный опыт анализа данных с помощью пакета IBM SPSS
- Студенты познакомятся и сформируют первичный опыт работы в IBM SPSS
- Студенты познакомятся и сформируют первичный опыт работы в среде R
- Студенты познакомятся со средой Python и сформируют первичный опыт работы в ней
- Студенты узнают базовые модели математического моделирования для принятия управленческих решений
- Студенты узнают виды анализа данных для принятия управленческих решений и типы данных, а также требования к формированию баз данных в зависимости от планируемых задач
- Студенты узнают основные категории статистического анализа данных
- Студенты узнают разнообразие и характер данных, которым может оперировать менеджер для принятия управленческих решений;
Содержание учебной дисциплины
- Возможности анализа данных для принятия управленческих решений
- Базовые категории при анализе баз данных
- Структуры базы данных
- Корреляционный анализ
- Регрессионный анализ
- Кластерный анализ
- Дерево решений
- Анализ операций организации
Элементы контроля
- Активность на занятияхАктивность на интерактивных лекционных и на семинарских занятиях - на основе домашней подготовки
- Практические работыТребуется самостоятельное выполнение практических заданий в соответствие с темами курса. Задания сдаются в формате презентации и защиты на семинарах.
- Итоговая защита проектаЗащита проекта по решению практической управленческой проблемы (выбирается обучающимися или выполняется на основе учебного кейса) с применением не менее трех изученных инструментов анализа.
Промежуточная аттестация
- 2022/2023 учебный год 4 модуль0.3 * Итоговая защита проекта + 0.05 * Активность на занятиях + 0.3 * Практические работы
Список литературы
Рекомендуемая основная литература
- 19069 - А.Обервайс; Г.Фоссен; Т.Карле; Ф.Шёнталер - Бизнес-процессы: Языки моделирования, методы, инструменты - 9785961424829 - Alpina - Альпина Паблишер - 2019 - https://hse.alpinadigital.ru/book/19069
- Анализ данных : учебник для вузов / В. С. Мхитарян [и др.] ; под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2020. — 490 с. — (Высшее образование). — ISBN 978-5-534-00616-2. — Текст : электронный // ЭБС Юрайт [сайт]. — URL: http://biblio-online.ru/bcode/450166 (дата обращения: 31.08.2020).
- Базы данных : учеб. пособие / О.Л. Голицына, Н.В. Максимов, И.И. Попов. — 4-е изд., перераб. и доп. — Москва : ФОРУМ : ИНФРА-М, 2020. — 400 с. — (Высшее образование: бакалавриат). - Текст : электронный. - URL: http://znanium.com/catalog/product/1053934
- Бизнес-аналитика средствами Excel : учеб. пособие / Я.Л. Гобарева, О.Ю. Городецкая, А.В. Золотарюк. — 3-е изд., перераб. и доп. — М. : Вузовский учебник : ИНФРА-М, 2018. — 350 с. + Доп. материалы [Электронный ресурс; Режим доступа http://www.znanium.com]. - Режим доступа: http://znanium.com/catalog/product/854421
- Груздев, А. В. Прогнозное моделирование в IBM SPSS Statistics, R и Python: метод деревьев решений и случайный лес : руководство / А. В. Груздев. — Москва : ДМК Пресс, 2018. — 642 с. — ISBN 978-5-97060-539-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/123700 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Джонатан, К., Грегори, Р., & Джек, С. (2015). Форсайт, конкурентная разведка и бизнес-аналитика — инструменты повышения эффективности отраслевых программ. Форсайт, 9(1).
- Миркин, Б. Г. Введение в анализ данных : учебник и практикум / Б. Г. Миркин. — Москва : Издательство Юрайт, 2020. — 174 с. — (Высшее образование). — ISBN 978-5-9916-5009-0. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/450262 (дата обращения: 28.08.2023).
- Салин, В. Н., Статистический анализ данных цифровой экономики в системе «STATISTICA» : учебно-практическое пособие / В. Н. Салин, Э. Ю. Чурилова. — Москва : КноРус, 2019. — 238 с. — ISBN 978-5-406-06835-9. — URL: https://book.ru/book/931277 (дата обращения: 25.08.2023). — Текст : электронный.
- Язык программирования Python: практикум : учеб. пособие / Р.А. Жуков. — М. : ИНФРА-М, 2019. — 216 с. + Доп. материалы [Электронный ресурс; Режим доступа: http://www.znanium.com]. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/textbook_5cb5ca35aaa7f5.89424805.
Рекомендуемая дополнительная литература
- Базы данных. Практическое применение СУБД SQL и NoSQL-типа для проектирования информационных систем : учеб. пособие / С.А. Мартишин, В.Л. Симонов, М.В. Храпченко. — М. : ИД «ФОРУМ» : ИНФРА-М, 2019. — 368 с. — (Высшее образование: Бакалавриат). - Режим доступа: http://znanium.com/catalog/product/1001370
- Бизнес-процессы: регламентация и управление : учебник / В.Г. Елиферов, В.В. Репин. — М. : ИНФРА-М, 2019. — 319 с. — (Учебники для программы МВА). - Режим доступа: http://znanium.com/catalog/product/1020015
- Бринк Хенрик, Ричардс Джозеф, Феверолф Марк - Машинное обучение. — (Серия «Библиотека программиста») - 978-5-496-02989-6 - Санкт-Петербург: Питер - 2018 - 355472 - https://ibooks.ru/bookshelf/355472/reading - iBOOKS
- Воскобойников Ю.Е. - Регрессионный анализ данных в пакете MATHCAD - Издательство "Лань" - 2011 - 224с. - ISBN: 978-5-8114-1096-5 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/666
- Изучаем Spark: молниеносный анализ данных / Х. Карау, Э. Конвински, П. Венделл, М. Захария. — Москва : ДМК Пресс, 2015. — 304 с. — ISBN 978-5-97060-323-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/90118 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Интернет-предпринимательство: практика применения дизайн-мышления в создании проекта : учебно-практическое пособие / Н. Ф. Алтухова, А. А. Громова, М. Р. Зобнина [и др.] ; под ред. Е. В. Васильевой. — Москва : КноРус, 2019. — 306 с. — (Бакалавриат). — ISBN 978-5-406-06805-2. — URL: https://book.ru/book/930721 (дата обращения: 25.08.2023). — Текст : электронный.
- Кондрашов, Ю. Н., Анализ данных и машинное обучение на платформе MS SQL Server : учебное пособие / Ю. Н. Кондрашов. — Москва : Русайнс, 2020. — 303 с. — ISBN 978-5-4365-3369-8. — URL: https://book.ru/book/933497 (дата обращения: 25.08.2023). — Текст : электронный.
- Крыштановский А. О. - Анализ социологических данных с помощью пакета SPSS - 978-5-7598-0486-4 - Москва: ВШЭ - 2007 - 352901 - https://ibooks.ru/bookshelf/352901/reading - iBOOKS
- Мадера, А. (2014). Принятие Решений В Условиях Неопределенности При Актуализации В Будущем Множества Возможных Шансов И Рисков. МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ, 4.
- Системный анализ, оптимизация и принятие решений : учебник для студентов высших учебных заведений / В.А. Кузнецов, А.А. Черепахин. — М. : КУРС : ИНФРА-М, 2017. — 256 с. - Режим доступа: http://znanium.com/catalog/product/908528