• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2022/2023

Байесовские методы в анализе данных

Статус: Маго-лего
Когда читается: 1 модуль
Охват аудитории: для своего кампуса
Преподаватели: Ракитин Денис Романович, Южаков Тимофей Алексеевич
Язык: английский
Кредиты: 5
Контактные часы: 28

Course Syllabus

Abstract

This course introduces the basic theoretical and applied principles of Bayesian statistical analysis in a manner geared toward students in the social sciences. The Bayesian paradigm is particularly useful for the type of data that social scientists encounter given its recognition of the mobility of population parameters, its ability to incorporate information from prior research, and its ability to update estimates as new data are observed. The course consists of three main sections: a Bayesian approach to probability theory, sampling methods, and major types of generative models.