Магистратура
2023/2024
Майнинг данных и машинное обучение в социологическом эксперименте
Статус:
Курс по выбору (Социология публичной сферы и цифровая аналитика)
Направление:
39.04.01. Социология
Кто читает:
Департамент социологии
Где читается:
Факультет социальных наук
Когда читается:
2-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Александрова Марина Юрьевна
Прогр. обучения:
Социология публичной сферы и цифровая аналитика
Язык:
русский
Кредиты:
6
Контактные часы:
40
Программа дисциплины
Аннотация
Курс знакомит слушателей с современными методами майнинга данных и машинного обучения. Студенты сформируют представление о ключевых этапах в подготовке и анализе данных с помощью библиотек языка программирования Python. Курс доступен для студентов магистратуры социологической специальности, требует наличие у студентов навыков работы с Python и понимания ключевых понятий и подходов теории вероятностей и математической статистики, и моделей статистического анализа данных. Целевое назначение курса состоит в формировании у студентов комплекса знаний о методологии и анализе данных с помощью библиотек языка программирования Python, развитии умений и навыков, необходимых для практической реализации исследований, предполагающих количественный анализ данных для целей социологических исследований.
Цель освоения дисциплины
- Целями освоения дисциплины являются изучение и практическое освоение методов майнинга данных и машинного обучения в социологии, изучение и практическое освоение языков программирования и компьютерных программ, применяемых для майнинга данных и машинного обучения (Python, Anaconda), приобретение понимания работы с количественными данными в Python, понимания типов задач, которые могут быть решены с помощью методов майнинга данных и машинного обучения. В результате освоения дисциплины студент должен знать основные понятия теории вероятностей, математической статистики, методы статистического анализа данных и машинного обучения в пределах программы курса; уметь ставить и понимать задачи в области социологических исследований, которые могут быть решены с помощью методов машинного обучения, понимать специфику данных, используемых в машинном обучении, а также владеть навыками реализации самостоятельной работы с применением методов майнинга данных и машинного обучения на компьютере на языке Python с помощью программы Anaconda.
Планируемые результаты обучения
- Уметь интерпретировать результаты анализа данных на языке Python в контексте решения прикладных задач.
- Уметь реализовывать каждый изучаемый метод c помощью среды Jupyter
- Уметь интерпретировать результаты анализа данных с помощью языка Python в контексте решения прикладных задач
- Уметь интерпретировать результаты анализа данных на языке Python в контексте решения прикладных задач; Уметь интерпретировать результаты анализа данных с помощью языка Python в контексте решения прикладных задач; Уметь реализовывать каждый изучаемый метод c помощью среды Jupyter
Содержание учебной дисциплины
- Введение в анализ данных с помощью Python.
- Предобработка данных.
- Визуализация данных.
- Статистический анализ данных.
- Подготовка данных к машинному обучению
- Машинное обучение с учителем.
- Машинное обучение без учителя.
Элементы контроля
- Групповой проектЦель задания: подготовить презентацию по проведенному анализу данных (выступления - команда записывает видео своего выступления; нужно объединиться в группы с теми, кто работает по одной и той же базе - по 3 человек в группе).
- Контрольная работаКонтрольная работа в формате код-ревью случайного проекта
- Экзамен
Промежуточная аттестация
- 2023/2024 учебный год 2 модуль0.25 * Групповой проект + 0.15 * Контрольная работа + 0.6 * Экзамен
Список литературы
Рекомендуемая основная литература
- A Tutorial on Machine Learning and Data Science Tools with Python. (2017). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.E5F82B62
Рекомендуемая дополнительная литература
- Taieb, D. (2018). Data Analysis with Python : A Modern Approach. Birmingham, UK: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1993344