Бакалавриат
2023/2024
Введение в регрессионный анализ
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Политология)
Направление:
41.03.04. Политология
Кто читает:
Кафедра высшей математики
Где читается:
Факультет социальных наук
Когда читается:
2-й курс, 1 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
3
Контактные часы:
28
Программа дисциплины
Аннотация
Регрессионный анализ - основной инструмент анализа данных в политической науке, государственном управлении, микро и макроэкономике. Он позволяет строить прогнозы, описывать сложные взаимосвязи между наборами признаков, а в некоторых случаях - даже измерять эффекты воздействий и оценивать силу причинно-следственных связей. Дисциплина «Введение в регрессионный анализ» посвящена базовым темам регрессионного анализа и дает студентам представление о содержательном смысле линейных регрессионных моделей, их основных допущениях, инструментах диагностики этих допущений, а также интерпретации полученных результатов. Для успешного освоения этой дисциплины требуются знания по теории вероятностей и математической статистике в объеме вводного курса, а также умение дифференцировать линейную функцию и полином. Студенты смогут продолжить углублённое изучение регрессионных и других моделей анализа социально-экономических и политологических данных в курсах по выбору: «Линейная алгебра и приложения в многомерной статистике» и «Регрессионный анализ:панельные данные и каузальность» на втором и третьем курсах образовательной программы.
Цель освоения дисциплины
- Знакомство студентов-политологов с основные понятиями и инструментами регрессионного анализа и их использованием в фундаментальных и прикладных исследованиях
Планируемые результаты обучения
- Умение строить парную регрессию
- Умение интерпретировать результаты построения парной регрессии
- Понимать логику и алгоритмы статистического вывода (с примерами)
- Знать основные статистические критерии, используемые в регрессионном анализе
- Понимать правила создания фиктивных переменных, верно интерпретировать коэффициенты при них
- Знать основные понятия, связанные со множественной регрессией
- Объяснять преимущества множественной регрессии перед парной в терминах пропущенных переменных
- Проверять гипотезы о коэффициентах множественной регрессии
- Оценивать качество модели множественной регрессии
- Объяснять суть гетерогенности эффектов
- Понимать механизм создания и интерпретацию моделей со взаимодействиями переменных
- Объяснять суть проблемы эндогенности
- Объяснять суть и механизм нахождения оценок инструментальных переменных
- Приводить примеры инструментальных переменных
- Уметь проверять статистические гипотезы с помощью понятия критической области и минимального уровня значимости (p-value)
- Уметь применять критерий Стьюдента для двух выборок к решению содержательных задач
- Уметь применять доверительный интервал для среднего к решению содержательных задач
Содержание учебной дисциплины
- Парная регрессия
- Статистический вывод: повторение
- Категориальные объясняющие переменные в регрессии
- Множественная регрессия
- Гетерогенность эффектов воздействия
- Эндогенность
Элементы контроля
- Проверочные работыОценка рассчитывается как 10*ДБ (без округления), где ДБ - это доля баллов, набранных за все проверочные работы, проведенные в течение реализации дисциплины.
- ЭкзаменЭкзаменационная работа состоит из теоретической и практической частей.
- Домашние заданияОценка выставляется как среднее арифметическое оценок за домашние задания (без округления)
- ПрактикумПрактикум по регрессионному анализу на компьютере
Промежуточная аттестация
- 2023/2024 учебный год 1 модуль0.25 * Домашние задания + 0.2 * Практикум + 0.25 * Проверочные работы + 0.3 * Экзамен
Список литературы
Рекомендуемая основная литература
- Gujarati, D. (2014). Econometrics by Example (Vol. 2nd ed). Basingstoke: Palgrave Macmillan. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1525312
- Regression basics, Kahane, L. H., 2008
Рекомендуемая дополнительная литература
- Голая статистика : самая интересная книга о самой скучной науке, Уилан, Ч., 2016