• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2023/2024

Принятие решений в задачах цифровой экономики в условиях риска и неопределённости

Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс по выбору (Экономика и статистика)
Направление: 38.03.01. Экономика
Когда читается: 4-й курс, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 28

Программа дисциплины

Аннотация

Анализируя сложные процессы функционирования экономических систем, исследователь или лицо, принимающее решения, сталкивается с различными типами неопределенности. Эти неопределенности могут иметь как стохастический характер, так и иную природу. Поэтому современному экономисту-исследователю и практику необходимо научиться владеть основными инструментариями принятия решений в условиях риска и неопределенности. В этом курсе будут рассмотрены нестохастические модели описания неточности данных и неопределенности условий принятия решений. В частности, будут рассмотрены основные положения теории нечетких множеств и методы работы с нечеткими данными (нечеткая регрессия, нечеткая кластеризация данных), модели принятия решений при нечеткой информации. Также будут рассмотрены основные модели описания неопределенности нестохастического характера и принятия решений в условиях такой неопределенности. Это, прежде всего, модели в рамках теории свидетельств (функций доверия). В ходя изучения дисциплины будут рассмотрены различные кейсы применения изученных теоретических положений к решению реальных задач анализа экономической информации и принятия решений. В частности, будут рассмотрены следующие задачи: - выбор торговой стратегии на основе оценивания функций принадлежности торговых решений; - анализ согласованности позиций экспертов в задачах принятия решений на основе вычисления показателя размытия нечетких множеств; - кластеризация банков по согласованности их рекомендаций о прогностической стоимости акций на основе построения нечетких отношений; - нечеткий вывод при анализе фондового и валютного рынков; - регрессия с нечеткими данными и/или нечеткими параметрами; - нечеткая классификация и кластеризация финансово-экономических данных; - оценка качества и агрегирования экспертной информации методами теории свидетельств; - наилучшее распределение средств сервисной компании (гостиница, авиакомпания и пр.), как задача максимизации нечеткого агрегирующего интеграла при бюджетных ограничениях.
Цель освоения дисциплины

Цель освоения дисциплины

  • Ознакомление студентов с основами работы с нечеткими данными и в условиях нестохастической неопределенности (теорией возможностей, теорией свидетельств и др.) применительно к задачам анализа экономических данных и принятия решений.
Планируемые результаты обучения

Планируемые результаты обучения

  • студент должен иметь представление о нечетких отношениях и уметь их использовать в задачах экономического анализа
  • студент должен иметь представление о нечетких числах, операциях над ними, способах измерения расстояний между ними и их сравнении; должен уметь строить простые графики с нечеткими параметрами или переменными, решать простые нечеткие уравнения
  • студент должен иметь представление о нечеткой кластеризации
  • студент должен иметь представление о нечеткой регрессии
  • студент должен иметь представление о понятии нечеткого множества и основных операциях над ними
  • студент должен иметь представление об основных понятиях теории свидетельств и прикладном потенциале этой теории в задачах экономического анализа
  • студент должен уметь применять простые методы принятия решений к задачам с нечеткими данными
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Нечеткие множества и их применение
  • Нечеткие отношения в задачах экономического анализа.
  • Нечеткие числа и нечеткая арифметика.
  • Принятие решений при нечетких данных в задачах экономического анализа.
  • Нечеткая классификация и кластеризация.
  • Нечеткая регрессия в задачах экономического анализа.
  • Элементы теории свидетельств и их применение в задачах анализа экспертной информации и принятия решений.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
    Письменная работа.
  • неблокирующий Экзамен
    Письменная работа
  • неблокирующий Дополнительное собеседование
    Студенты, набравшие не менее 7 (итоговых) баллов, имеют право на получение 1-2 бонусных баллов (до 10-ти итоговых баллов) по результатам дополнительного собеседования (решения дополнительных задач повышенной сложности, ответы на вопросы повышен-ной сложности и пр.).
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 2 модуль
    0.1 * Дополнительное собеседование + 0.4 * Контрольная работа + 0.5 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Wang X., Ruan D., Kerre E.E. Mathematics of Fuzziness – Basic Issues. – Berlin Heidelberg: Springer-Verlag, 2009.
  • Волкова, Е. С., Нечеткие множества и мягкие вычисления в экономике и финансах : учебное пособие / Е. С. Волкова, В. Б. Гисин. — Москва : КноРус, 2019. — 155 с. — ISBN 978-5-406-06705-5. — URL: https://book.ru/book/930521 (дата обращения: 26.08.2024). — Текст : электронный.
  • Нечеткие модели анализа данных и принятия решений : учебное пособие, Броневич, А. Г., 2022

Рекомендуемая дополнительная литература

  • Dash, M. K., & Kumar, A. (2016). Fuzzy Optimization and Multi-Criteria Decision Making in Digital Marketing. Hershey, PA: Business Science Reference. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1087743
  • Glenn Shafer, & Roger Logan. (n.d.). 18 Implementing Dempster’s Rule for Hierarchical Evidence. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.A0D71FF9
  • Viertl, R. (2007). Fuzzy Data and Statistical Modeling. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.E4DD52AD
  • Viertl, R. (2010). Statistical Methods for Fuzzy Data. Chichester, West Sussex: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=354087
  • Нечеткие модели и методы в менеджменте : учеб. пособие для вузов, Птускин, А. С., 2008

Авторы

  • Лепский Александр Евгеньевич