Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2023/2024

Научно-исследовательский семинар "Алгоритмы роевого интеллекта"

Статус: Курс по выбору (Программная инженерия)
Направление: 09.03.04. Программная инженерия
Когда читается: 4-й курс, 1-3 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: русский
Кредиты: 3
Контактные часы: 48

Программа дисциплины

Аннотация

Swarm Intelligence (роевой интеллект) – раздел искусственного интеллекта, алгоритмы которого используют принципы поведения групп социальных насекомых, птиц, животных, рыб и других живых организмов. Например, один муравей ведет себя относительно просто, однако в группе муравьи способны решать сложные задачи: находить кратчайшие пути между источниками пищи и своим гнездом, бороться за ресурсы, сортировать личинки по размеру. Swarm intelligence успешно применяется для широкого круга научных и практических задач: разбиение графов, маршрутизация транспортных средств, задача о назначениях, поиск трендов, обработка изображений; в некоторых случаях только Swarm Intelligence способен отыскивать лучшие решения. Данный НИС познакомит с разделом искусственного интеллекта Swarm Intelligence, вооружив слушателей эвристическими подходами для решения широкого круга задач оптимизации.
Цель освоения дисциплины

Цель освоения дисциплины

  • познакомиться с разделом искусственного интеллекта под названием Swarm Intelligence
  • освоить мета-эвристику ACO (Ant Colony Optimization)
  • освоить мета-эвристику PCO (Particle Swarm Optimization)
  • уметь разрабатывать алгоритмы на основе генетических алгоритмов (Genetic Algorithms)
  • освоить подход имитации отжига (Simulated Annealing)
  • знать задачи, которые решаются с помощью Swarm Intelligence
  • знать области применения Swarm Intelligence
  • знать практические приложения Swarm Intelligence
  • улучшить навыки выступлений с научными докладами в форме презентаций
Планируемые результаты обучения

Планируемые результаты обучения

  • знать и понимать особенности подходов Swarm Intelligence
  • ориентироваться в современных трендах Swarm Intelligence
  • уметь разрабатывать алгоритмы на основе Swarm Intelligence
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Мета-эвристика ACO (Ant Colony Optimization)
  • Генетические алгоритмы (Genetic Algorithms)
  • Задачи для решения с помощью Swarm Intelligence
  • Предметные области применения Swarm Intelligence
  • Мета-эвристика PCO (Particle Swarm Optimization)
  • Подходы на основе имитации отжига (Simulated Annealing)
  • Дополнительные эвристики Swarm Intelligence
  • Практические приложения Swarm Intelligence
Элементы контроля

Элементы контроля

  • неблокирующий Выступление с презентацией (PP)
  • неблокирующий Инициативная тема (IT)
  • неблокирующий Экзамен (EX)
  • неблокирующий Индивидуальный проект (CW)
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 3 модуль
    CW вычисляется следующим образом (линейная формула оценивания): CW=CWM×40/10% где CWM = (T1 + T2 + T3 + T4 + T5) / 5 – среднее значение за все задания во время всех семинаров (T1, ... - оцениваются от 0 до 10 баллов). Балл за не показанное/не защищенное задание равен 0. PP вычисляется следующим образом (линейная формула оценивания): PP=PPM×40/10% где PPM – оценка за выступление с научным докладом в форме презентации. Возможно выступление с несколькими докладами. Накопленная оценка O_A вычисляется следующим образом: O_A=(PP+CW)×10/80 Оценка за курс вычисляется следующим образом (линейная формула оценивания): O_C=O_A×0.8+EX×0.2 При вычислении процентов, значения остаются в своей изначальной форме. При вычислении оценок (0..10), происходит стандартное математическое округление. Таким образом, на определенных этапах округляются только O_A, EX, и O_C. В научном докладе в форме презентации оцениваются: сложность темы, степень раскрытия темы, качество устного выступления, качество презентации (слайды), ответы на вопросы. В заданиях на семинарах оцениваются: аккуратность выполнения задания, корректность результата. Если разрабатывается программный код, то к нему применяются здравые критерии оценки такого вида задания, которые во многим общи для дисциплин, в которых необходимо программировать. За творческий подход к выполнению задания могут начисляться баллы. По желанию студент может выбрать индивидуальную образовательную траекторию, в которую входит научная либо проектная работа, участие в конференциях, конкурсах и другие виды деятельности. Индивидуальная образовательная траектория должна заранее согласовываться с преподавателем. Сроки и объемы работ должны заранее обговариваться и согласовываться с преподавателем. Оценивание работы индивидуальной образовательной траектории выполняется по правилам, обговариваемым со студентом. В таком случае, формула O_C и/или O_A может быть изменена с добавлением IT, вес которого обговаривается со студентом заранее. Преподаватель оставляет за собой право задавать вопросы во время защиты работ, чтобы обеспечить понимание материала студентом, написанного исходного кода, подлинность исходного кода. Вопросы также могут основываться на материалах, которые были освещены на семинаре. Преподаватель оценивает работы в соответствии с процентом отвеченных вопросов, количеством выполненной работы, точностью исходного кода и приложением в целом, правильностью приложения и другими здравыми критериями, применимыми к данным видам работы. Студент имеет только 3 попытки дать правильный ответ на поставленный преподавателем вопрос, включая первый ответ студента. Остальные детали оценивания сообщаются на семинарах/по почте в зависимости от задания.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Grosan C., Abraham A., Chis M. Swarm intelligence in data mining //Swarm Intelligence in Data Mining. – Springer, Berlin, Heidelberg, 2006.

Рекомендуемая дополнительная литература

  • Agent-based methods in economics and finance : simulations in Swarm, , 2002

Презентации

  • Видео-презентация

Авторы

  • Родригес Залепинос Рамон Антонио