• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2023/2024

Анализ данных

Статус: Курс обязательный (Журналистика)
Направление: 42.03.02. Журналистика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: с онлайн-курсом
Онлайн-часы: 50
Охват аудитории: для своего кампуса
Преподаватели: Касьяненко Дарья Алексеевна, Ластовецкий Дмитрий Александрович, Перевышина Татьяна Олеговна, Северенкова Анастасия Евгеньевна
Язык: русский
Кредиты: 3
Контактные часы: 28

Программа дисциплины

Аннотация

Данный курс направлен на формирование компетенций у студентов в области статистики и анализа данных. В курсе будут рассмотрены темы, которые необходимы для успешного освоения основных понятий и методов, связанных с анализом данных. Дисциплина реализуется с помощью онлайн-курса «Учебник по Анализу данных (Начальный)» в SmartLMS (https://edu.hse.ru/course/view.php?id=136231).
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Анализ данных» является овладение студентами основами статистики и анализа данных для применения в решении различных практических задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Понимать и корректно использовать основные статистические понятия
  • Фильтровать данные по нескольким условиям
  • Создавать сводные таблицы
  • Вычислять коэффициент корреляции Пирсона и интерпретировать полученные результаты
  • Вычислять релевантные описательные статистики и интерпретировать полученные результаты
  • Визуализировать данные с помощью простейших видов диаграмм: линейной, точечной, столбчатой
  • Сортировать данные
  • Переводить значения признака в z-оценки
  • Обрабатывать пропущенные значения и выбросы
  • Корректно открывать табличные данные различных форматов
  • Использовать собственноручно написанные функции для обработки данных, создания новых переменных
  • Использовать Python в применении к анализу данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Python для анализа данных, алгоритмы
  • Библиотеки для работы с данными в Python
  • Визуализация данных
  • Машинное обучение
  • Текстовый анализ
Элементы контроля

Элементы контроля

  • неблокирующий КР
    формат сдачи контрольного мероприятия зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
  • неблокирующий Экзамен
    формат сдачи контрольного мероприятия зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
  • неблокирующий Активность на семинарах
  • неблокирующий Мини-тесты на семинарах
    формат сдачи контрольных мероприятий зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
  • неблокирующий Проект (групповой)
    формат сдачи контрольных мероприятий зависит от формата проведения занятий (для онлайн-занятий – возможно использование прокторинга)
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 2nd module
    min(0,2 * КР + 0.2 * Экзамен + 0.1 * Активность на семинарах + 0.2 * Мини-тесты на семинарах + 0.3 * Проект (групповой); 8) Комментарий к формуле: Пункт ПОПАТКУСа 69. Независимый экзамен может иметь факультативные или обязательные дисциплины-пререквизиты, включенные в учебный план образовательной программы. Степень обязательности дисциплин-пререквизитов определяется в программе независимого экзамена или в иных локальных нормативных актах, описывающих особенности формирования компетенций. Оценка, выставляемая по итогам промежуточной аттестации по дисциплине-пререквизиту к независимому экзамену по цифровой компетенции, не может быть больше 8 баллов.

Авторы

  • Королева Анастасия Романовна