Бакалавриат
2023/2024
Теория вероятностей и математическая статистика
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Статус:
Курс обязательный (Инфокоммуникационные технологии и системы связи)
Направление:
11.03.02. Инфокоммуникационные технологии и системы связи
Кто читает:
Департамент прикладной математики
Когда читается:
2-й курс, 3, 4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
4
Контактные часы:
72
Программа дисциплины
Аннотация
Данный курс входит в ядро классического математического образования и преподается студентам второго курса в течение трех модулей. Две логические части курса - теория вероятностей и математическая статистика - делят отведенное время примерно поровну с небольшими креном в сторону теории вероятностей. В первой части курса (теория вероятностей) рассматриваются классические темы начиная с аксиоматики и заканчивая предельными теоремами. Относительно большее внимание уделяется условным моментам многомерных случайных величин. Раздел статистики стартует с методов описательной статистики, однако быстро переходит к методам статистического вывода, поскольку они требуют гораздо больше времени на объяснение. Темы, затрагиваемые здесь, традиционны и включают выборочные распределения, точечные и интервальные оценки, тестирование гипотез, модели линейной регрессии. В ходе изложения курса поддерживается определенный баланс между математической строгостью и ясностью изложения. Иногда эта дилемма разрешается в пользу иллюстрирующих примеров, помогающих студенту ухватить суть идеи и позволяющих применить полученные знания для решения практической задачи, а не концентрироваться на запоминании вывода формул. Тем не менее во всех уместных случаях все относительно компактные доказательства приводятся.
Цель освоения дисциплины
- Целью курса является знакомство студентов с аппаратом теории вероятностей и математической статистики и развитие навыков решения практических задач в рамках теоретико-вероятностного и статистического подхода. Дисциплина является базисом для ряда будущих и текущих дисциплин, таких, как "Моделирование систем и процессов", "Математические основы защиты информации" и др.
Планируемые результаты обучения
- знать и уметь применять правила комбинаторики для подсчета количества событий, знать и применять аксиомы теории вероятностей для решения задач, включая теоретико-множественный подход
- по окончании соответствующего раздела курса студенты должны понимать и оперировать на практике концепцией условной вероятности, понимать суть независимости событий, уметь пользоваться формулой полной вероятности и формулой Байеса.
- по окончании соответствующего раздела курса студенты должны понимать суть дискретной случайной величины и способы ее задания в виде распределения, знать свойства функции распределения, уметь рассчитывать моменты произвольного распределения, знать основные виды распределений.
- по окончании соответствующего раздела курса студенты должны понимать суть непрерывной случайной величины, знать способы ее задания в виде плотности и функции распределения, знать свойства последних, знать основные виды используемых на практике распределений непрерывных величин, особенно нормального
- по окончании соответствующего раздела курса студенты должны знать способы задания многомерной случайной величины, уметь проводить маржинализацию распределений, получать условные распределения и моменты. Знать и уметь пользоваться формальным определением независимости случайных величин. Уметь рассчитывать корреляцию между парами случайных величин. Уметь выводить и пользоваться выражением для плотности суммы двух независимых величин
- по окончании соответствующего раздела курса студенты должны понимать суть и уметь использовать на практике закон больших чисел и центральную предельную теорему
- Предмет, цели и задачи математической статистики. Генеральная совокупность, выборка. Количественные и качественные переменные. Визуальное представление данных: гистограмма, диаграмма ствол-и-листья. Меры положения эмпирического распределения: выборочное среднее, медиана. Мода. Квартили и персентили. Меры ширины эмпирического распределения: размах, выборочная дисперсия, интерквартильный размах.
- по окончании соответствующего раздела курса студенты должны понимать общий подход к построению распределения параметров распределения и знать их вид для среднего, доли, разности средних и разности долей.
- по окончании соответствующего раздела курса студенты должны знать принципы построения точечных и интервальных оценок, знать формулу разложения среднеквадратичной ошибки на смещение и разброс, уметь строить доверительные интервалы для различных параметров распределения
- по окончании соответствующего раздела курса студенты должны знать общий принцип тестирования гипотез, применять его для вывода о параметрах распределения или его вида.
- по окончании соответствующего раздела курса студенты должны знать и уметь пользоваться на практике моделями линейной регрессии, включая оценку параметров методом наименьших квадратов и построения соответствующих доверительных интервалов.
Содержание учебной дисциплины
- Введение: основы комбинаторики, аксиомы теории вероятностей
- Условные вероятности и независимость событий
- Дискретные случайные величины
- Непрерывные случайные величины
- Многомерные случайные величины
- Предельные теоремы
- Предмет и методы статистики
- Выборочные распределения
- Точечные и интервальные оценки параметров распределения
- Тестирование гипотез.
- Модели линейной регрессии
Элементы контроля
- Работа на семинарах
- Домашнее задание 2
- Домашнее задание 1
- Экзамен
- Контрольная работа 1
- Контрольная работа 2
- Работа на семинарах
- Экзамен 3
Промежуточная аттестация
- 2023/2024 учебный год 3 модуль0.12 * Домашнее задание 1 + 0.36 * Контрольная работа 1 + 0.12 * Работа на семинарах + 0.4 * Экзамен 3
- 2023/2024 учебный год 4 модуль0.12 * Домашнее задание 2 + 0.36 * Контрольная работа 2 + 0.12 * Работа на семинарах + 0.4 * Экзамен
Список литературы
Рекомендуемая основная литература
- Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике : учебное пособие для вузов / В. Е. Гмурман. — 11-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 406 с. — (Высшее образование). — ISBN 978-5-534-08389-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468330 (дата обращения: 27.08.2024).
- Гмурман, В. Е. Теория вероятностей и математическая статистика : учебник для вузов / В. Е. Гмурман. — 12-е изд. — Москва : Издательство Юрайт, 2021. — 479 с. — (Высшее образование). — ISBN 978-5-534-00211-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468331 (дата обращения: 27.08.2024).
- Зубков, А. М. Сборник задач по теории вероятностей : учебное пособие для вузов / А. М. Зубков, Б. А. Севастьянов, В. П. Чистяков. — 4-е изд., стер. — Санкт-Петербург : Лань, 2022. — 320 с. — ISBN 978-5-8114-9085-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/184062 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Введение в теорию вероятностей и ее приложения, Феллер, В., 1964
- Введение в теорию вероятностей и ее приложения. Т. 2: ., Феллер, В., 1984
- Введение в теорию вероятностей и ее приложения. Т.1: ., Феллер, В., 1984
- Кремер, Н. Ш. Математическая статистика : учебник и практикум для вузов / Н. Ш. Кремер. — Москва : Издательство Юрайт, 2020. — 259 с. — (Высшее образование). — ISBN 978-5-534-01654-3. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/451060 (дата обращения: 27.08.2024).
- Курс теории вероятностей : Учебник, Гнеденко, Б. В., 2001
- Ширяев, А. Н. Вероятность-1 : учебное пособие / А. Н. Ширяев. — Москва : МЦНМО, 2007. — 552 с. — ISBN 978-5-94057-105-6. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9448 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.