Бакалавриат
2023/2024
Математический анализ 2
Статус:
Курс по выбору (Экономика)
Направление:
38.03.01. Экономика
Кто читает:
Департамент математики
Где читается:
Факультет экономических наук
Когда читается:
3-й курс, 3 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Лобанов Сергей Григорьевич
Язык:
русский
Кредиты:
3
Контактные часы:
56
Программа дисциплины
Аннотация
Учебная дисциплина «Математический анализ-2» требует предварительного изучения курсов «Математический анализ-1» и «Линейная алгебра». В ней изучаются необходимые условия Куна — Таккера в задачах со смешанными ограничениями. Достаточные условия Куна — Таккера для выпуклых функций. Свойства многозначных (точечно-множественных) отображений, теорема Берже о максимумах, теоремы о неподвижной точке. Отдельные разделы посвящены свойствам некоторых функций комплексного переменного и исследованию устойчивости решений обыкновенных дифференциальных и разностных уравнений. Основные положения дисциплины «Математический анализ-2» используются при изучении некоторых разделов экономической теории, теории вероятностей и математической статистики, эконометрики, дифференциальных и разностных уравнений.
Цель освоения дисциплины
- Подготовить слушателей к чтению современных текстов по экономической теории, использующих модели и методы многомерного математического анализа.
- Продемонстрировать возможность применения в задачах многомерного математического анализа и его экономических приложениях многозначных (точечно-множественных) отображений.
- Распространить метод множителей Лагранжа на экстремальные задачи со смешанными ограничениями.
- Продемонстрировать возможность исследования зависимости экстремумов от параметров.
- Познакомить слушателей с классической теоремой Брауэра о неподвижной точке и некоторыми её обобщениями.
- Научить слушателей использовать комплексные числа и простейшие функции одного комплексного переменного для исследования устойчивости эволюционных процессов.
- Обеспечить запросы некоторых экономических дисциплин по тематике данного курса.
Планируемые результаты обучения
- Студенты должны быть знакомы с примерами применения разностных уравнений в экономике: рост процентного вклада с регулярными взносами, величина долга по займу с регулярными выплатами, паутинообразная модель рынка, модель делового цикла (Самуэльсона – Хикса).
- Студенты должны знать достаточные условия существования решений обыкновенных дифференциальных уравнений. Уметь исследовать устойчивость решений таких и разностных уравнений.
- Студенты должны знать методы решения линейных разностных уравнений c постоянными коэффициентами и исследовать устойчивость положения равновесия разностного уравнения.
- Студенты должны знать теорему Берже о максимумах
- Студенты должны знать теоремы о неподвижной точке Брауэра, Шаудера-Тихонова, Какутани.
- Студенты должны изучить обобщение метода множителей Лагранжа на задачи со смешанными ограничениями.
- Студенты должны получить первоначальные сведения из математического анализа функций одного комплексного переменного, необходимые для исследования обыкновенных дифференциальных уравнений и разностных уравнений.
- Студенты должны уметь использовать различные методы исследования многозначных (точечно-множественных) отображений. Знать секвенциальный критерий непрерывности компактозначных отображений.
Содержание учебной дисциплины
- Раздел 1. Теорема Куна-Такера
- Раздел 2. Многозначные (точечно-множественные) отображения
- Раздел 3. Теорема Берже о максимумах
- Раздел 4. Теоремы о неподвижной точке
- Раздел 5. Комплексные числа
- Раздел 6. Обыкновенные дифференциальные уравнения
- Раздел 7. Разностные (рекуррентные) уравнения
Промежуточная аттестация
- 2023/2024 учебный год 3 модульЭкзаменационная работа состоит из 8 заданий. Полное правильное решение каждого задания контрольной работы оценивается в 10/8=1,25 условных единиц. В случае неполного решения оценка может дробиться. По итогам контрольный работы студент может быть освобожден от решения некоторых из задач 1,2,3,4 экзамена (ставится заранее 10/8=1,25 условных единиц за задачу). Полученное число находится в одном из промежутков вида [а,Ь) с границами 0,1.5, 3,4.5, 5.5, 6.5, 7.5, 8.5, 9, 9.5,10,5. Номер промежутка (числа от 0 до 10) является итоговой оценкой.
Список литературы
Рекомендуемая основная литература
- Fuente, A. de la. (2000). Mathematical Methods and Models for Economists. Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.cup.cbooks.9780521585293
- Бурмистрова, Е. Б. Линейная алгебра : учебник и практикум для академического бакалавриата / Е. Б. Бурмистрова, С. Г. Лобанов. — Москва : Издательство Юрайт, 2019. — 421 с. — (Бакалавр. Академический курс). — ISBN 978-5-9916-3588-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/425852 (дата обращения: 28.08.2023).
- Математический анализ и дифференциальные уравнения : учебник для вузов, Бурмистрова, Е. Б., 2010
Рекомендуемая дополнительная литература
- Соколов, А. В. Методы оптимальных решений : учебное пособие : в 2 томах / А. В. Соколов, В. В. Токарев. — 3-е изд. — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 1 : Общие положения. Математическое программирование — 2012. — 264 с. — ISBN 978-5-9221-1399-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/59652 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.