Бакалавриат
2023/2024
Машинное обучение на больших данных
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс по выбору (Прикладная математика и информатика)
Направление:
01.03.02. Прикладная математика и информатика
Кто читает:
Департамент информатики
Когда читается:
4-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Кузнецов Антон Михайлович
Язык:
русский
Кредиты:
5
Контактные часы:
40
Программа дисциплины
Аннотация
Дисциплина направлена на ознакомление с теоретическими основами и основными принципами машинного обучения, овладение инструментарием, моделями и методами машинного обучения, а также приобретение навыков исследователя данных (data scientist) и разработчика математических моделей, методов и алгоритмов анализа данных.
Цель освоения дисциплины
- Формирование у студентов теоретических знаний и практических навыков по основам работы с продвинутыми алгоритмами машинного обучения.
Планируемые результаты обучения
- Знает ключевые понятия, цели и задачи использования машинного обучения, методологические основы применения алгоритмов машинного обучения.
- Умеет визуализировать результаты работы алгоритмов машинного обучения, выбирать метод машинного обучения, соответствующий исследовательской задаче, интерпретировать полученные результаты.
- Имеет навыки чтения и анализа академической литературы по применению методов машинного обучения, построения и оценки качества моделей.
Содержание учебной дисциплины
- Раздел 1. Анализ размерности данных и работа с признаками
- Раздел 2. Анализ распределения данных
- Раздел 3. Интерпретация результатов
Элементы контроля
- ПроектВ процессе изучения предмета обучающиеся должны будут применить изученные методы в задаче на данных с платформы Kaggle. Предполагается разделение учащихся на группы.
- ЭкзаменПроверка качества освоения дисциплины производится в форме устного экзамена. Экзамен проводится в формате разбора научной статьи по анализу данных и машинному обучению. Экзаменуемый должен продемонстрировать знание предмета на достаточном уровне для интерпретации современной научной литературы.
Список литературы
Рекомендуемая основная литература
- Murphy, K. P. (2012). Machine Learning : A Probabilistic Perspective. Cambridge, Mass: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=480968
Рекомендуемая дополнительная литература
- Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (Vol. Second edition, corrected 7th printing). New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=277008
- Richert, W., & Coelho, L. P. (2013). Building Machine Learning Systems with Python. Birmingham: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=619996