• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2023/2024

Эконометрика

Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Бизнес-информатика)
Направление: 38.03.05. Бизнес-информатика
Когда читается: 2-й курс, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 40

Программа дисциплины

Аннотация

В результате освоения дисциплины студент ознакомиться с основными понятиями и инструменты эконометрических методов исследования; будет знать методы построения эконометрических моделей, объектов, явлений и процессов, получит умения анализа во взаимосвязи экономических явлений, процессов и институтов. Будет уметь анализировать и интерпретировать данные отечественной и зарубежной статистики о социально-экономических процессах и явлениях, выявлять тенденции изменения социально-экономических процессов, осуществлять поиск информации по полученному заданию, сбор, анализ данных, необходимых для решения поставленных экономических задач; осуществлять выбор инструментальных средств для обработки экономических данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы. Студент получит навыки построения на основе описания ситуаций теоретических и эконометрических моделей, анализа и содержательной интерпретации полученных результатов; прогнозирования на основе стандартных теоретических и эконометрических моделей поведение экономических агентов, развитие экономических процессов и явлений, на микро- и макроуровне.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Эконометрика» являются овладение основами построения и оценки регрессионных уравнений.
Планируемые результаты обучения

Планируемые результаты обучения

  • вычисляет R2 МакФаддена и интерпретирует его
  • вычисляет вероятность попадания случайной величины в заданный интервал значений
  • вычисляет коэффициент детерминации и интерпретирует его
  • вычисляет оценки параметров парной регрессии по формулам
  • вычисляет прогнозную вероятность для моделей бинарного выбора
  • демонстрирует навыки владения эконометрическим инструментарием, полученные на семинарах
  • записывает и решает систему нормальных уравнений для парной и множественной регрессии
  • знает модели бинарного выбора (линейную модель вероятности и ее недостатки, модель логит, модель пробит)
  • знает определение эндогенности и инструментальных переменных
  • знает определения гетероскедастичности, автокорреляции, мультиколлинеарности
  • знает основные законы распределения вероятности, используемые в эконометрике
  • знает основные характеристики случайных величин
  • знает последствия нарушений предпосылок теоремы Гаусса-Маркова
  • знает свойства статистических оценок, проверяет оценки параметров на несмещенность, состоятельность, эффективность
  • знает способы устранения последствий нарушений предпосылок теоремы Гаусса-Маркова (поправки Уайта, Ньюи-Веста)
  • знает формулировку и доказательство теоремы Айткена
  • знает формулировку и доказательство теоремы Гаусса-Маркова
  • знает формулировку и доказательство теоремы Гаусса-Маркова для случая стохастических регрессоров
  • знает этапы эконометрического исследования и их содержание
  • может аналитически вывести оценку коэффициентов множественной регрессии двухшаговым методом наименьших квадратов
  • оценивает параметры множественной регрессии с помощью эконометрического пакета (Stata или R) и интерпретирует их
  • оценивает параметры моделей бинарного выбора с помощью эконометрического пакета (Stata или R) и интерпретирует их
  • перечисляет типы данных и переменных в эконометрике
  • сравнивает модели с ограничениями и без ограничений с помощью теста отношения правдоподобия (LR-тест)
  • сравнивает оцененные модели бинарного выбора по качеству подгонки с помощью информационных критериев
  • строит доверительный интервал для оценок коэффициентов классической линейной регрессии
  • строит прогноз по оцененной модели классической регрессии
  • считает предельные эффекты
  • тестирует гипотезу о значимости классической регрессии в целом
  • тестирует гипотезу о значимости линейных ограничений общего вида в классической регрессии
  • тестирует гипотезу о значимости оценок коэффициентов классической линейной регрессии
  • тестирует гипотезу о наличии структурных сдвигов в классической регрессии
  • тестирует гипотезу о состоятельности МНК-оценок коэффициентов классической регрессии с помощью теста Хаусмана
  • тестирует гипотезы о наличии гетероскедастичности, автокорреляции, мультиколлинеарности в классической регрессии
  • умеет объяснить положение и взаимосвязь эконометрики со смежными дисциплинами
  • умеет объяснить понятия регрессии, наилучшего линейного предсказания, среднеквадратической ошибки
  • умеет объяснить суть ММП; умеет объяснить различие между тремя типами статистических тестов: LR, LM и W
  • умеет объяснить, какие проблемы возникают в случае стохастических регрессоров
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Введение в эконометрику
  • Тема 2. Классическая линейная регрессия
  • Тема 3. Нарушения предпосылок теоремы Гаусса-Маркова
  • Тема 4. Метод максимального правдоподобия
  • Тема 5. Проблема эндогенности
  • Итоговый проект
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 1
  • неблокирующий Экзамен
  • неблокирующий Аудиторная работа
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 4 модуль
    0.3 * Аудиторная работа + 0.3 * Контрольная работа 1 + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Кеннеди, П. Путеводитель по эконометрике / П. Кеннеди ; пер. с англ. ; под науч. ред. В.П. Носко. — Москва : Издательский дом «Дело» РАНХиГС, 2016. — 528 с. - (Академический учебник). - ISBN 978-5-7749-1155-4. - Режим доступа: https://new.znanium.com/catalog/product/1043270
  • Кеннеди, П. Путеводитель по эконометрике / П. Кеннеди ; пер. с англ.; под науч. ред. В.П. Носко. — Москва : Издательский дом «Дело» РАНХиГС, 2016. — 512 с. - (Академический учебник). - ISBN 978-5-7749-1156-1. - Режим доступа: https://new.znanium.com/catalog/product/1043268

Рекомендуемая дополнительная литература

  • Евсеев, Е. А.  Эконометрика : учебное пособие для бакалавриата и специалитета / Е. А. Евсеев, В. М. Буре. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2019. — 186 с. — (Бакалавр и специалист). — ISBN 978-5-534-10752-4. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/431441 (дата обращения: 28.08.2023).

Авторы

  • Ларин Александр Владимирович