2023/2024
Машинное обучение II
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Маго-лего
Кто читает:
Департамент образовательных программ
Когда читается:
1 модуль
Охват аудитории:
для всех кампусов НИУ ВШЭ
Преподаватели:
Мартинез Саито Марио
Язык:
английский
Кредиты:
3
Контактные часы:
30
Course Syllabus
Abstract
Prerequisites: Basic knowledge of Statistics and Python.This course aims to provide state-of-the-art techniques of mathematical statistics as well as new and modern methods of machine learning. What is more important, this course will focus on practical activities and it will allow students to learn on their mistakes. Moreover, skills and knowledge obtained during this course could be applied to almost any field of science and industry. Students will know statements of all major machine learning problems and mathematical details of the most important data analysis methods and algorithms. Also, they will obtain skills, such selection of an appropriate method for solving particular data analysis problems, performance of basic data processing and visual analysis, features generation for subsequent machine learning, application machine learning libraries, algorithm's selection hyperparameters, critically evaluate the obtained results and redesign data-processing pipelines, ability to solve real-world data science problems using modern machine learning techniques.
Learning Objectives
- Students will get familiar with the basic concepts and methods of classical machine learning, and will acquire working knowledge of how to select and apply machine learning techniques to solve real world problems.
Expected Learning Outcomes
- Getting acquainted with the methods of model-free reinforcement learning, such as value learning.
- Recognizing and applying the most popular types of decision trees.
- Understanding how backpropagation works in neural networks with multiple layers.
- Deliver a presentation on a topic related to machine learning
- Understanding the basics of model-based reinforcement learning and its application to complex problems
- Applying machine learning methods to practical tasks such as data and text processing
- Learning how to configure neural nextworks for multiclass recognition and how to interpret patterns on high-dimensional spaces through dimensionality reduction techniques
- Students can prepare data for analysis
- Students can make tables with summary statistics, static and dynamic graphs
- Students can make regression analysis
- Students can apply basic classification algorithms
- Students can apply ensemble models for classification or regression tasks
- Students can apply basic techniques of dimensionality reduction
- Students can make data clustering
Course Contents
- Data preprocessing
- EDA. Data visualization
- Regression
- Classification
- Ensembles
- Dimensionality reduction
- Cluster analysis
Assessment Elements
- History, latest advances, development frameworks, coding project
- Exam
- ParticipationActive participation during the seminars
Interim Assessment
- 2023/2024 1st module0.4 * Exam + 0.3 * History, latest advances, development frameworks, coding project + 0.3 * Participation
Bibliography
Recommended Core Bibliography
- Pattern recognition and machine learning, Bishop, C. M., 2006
Recommended Additional Bibliography
- Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (Vol. Second edition, corrected 7th printing). New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=277008