• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2023/2024

Подготовка к собеседованиям на позиции исследователя данных и инженера машинного обучения

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Статус: Маго-лего
Когда читается: 3 модуль
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 14

Программа дисциплины

Аннотация

На курсе вы сможете систематизировать знания, полученные на курсах по математике, машинному обучению, глубинному обучению и инструментам разработки, и составить план для эффективной подготовки к собеседованию на позицию Data Scientist или Machine Learning Engineer.Курс состоит из четырех вебинаров, каждый из которых посвящен отдельной секции на собеседовании:* Математика* Машинное обучение* Глубинное обучение* Инструменты промышленной разработкиВ рамках курсы преподаватели, которые сами проводят секции, расскажут вам о том, какие вопросы задают на собеседованиях по этим секциям, и предложат список материалов для подготовки к секции.После каждого занятия будет тестирование по темам из секции. В конце курса - необязательный экзамен.
Цель освоения дисциплины

Цель освоения дисциплины

  • Успешно подготовиться к собеседованию на позиции Data Scientist / Machine Learning Engineer
Планируемые результаты обучения

Планируемые результаты обучения

  • Студенты будут знать список тем и примеры вопросов, которые задают на собеседованиях, говоря о математике. Также у студентов будут материалы для подготовки к данной секции на собеседовании.
  • Студенты будут знать список тем и примеры вопросов, которые задают на собеседованиях, говоря о машинном обучении. Также у студентов будут материалы для подготовки к данной секции на собеседовании.
  • Студенты будут знать список тем и примеры вопросов, которые задают на собеседованиях, говоря о глубинном обучении. Также у студентов будут материалы для подготовки к данной секции на собеседовании.
  • Студенты будут знать список тем и примеры вопросов, которые задают на собеседованиях, говоря об инструментах промышленной разработки. Также у студентов будут материалы для подготовки к данной секции на собеседовании.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Математика для анализа данных
  • Машинное обучение
  • Глубинное обучение
  • Инструменты промышленной разработки
Элементы контроля

Элементы контроля

  • неблокирующий Тест
  • неблокирующий Финальный тест
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 3 модуль
    Формула итоговой оценки: среднее(тест1 + тест2 + тест3 + тест4 + тест5 + тест6 + тест7) При получении средней минимальной оценки >=4 за выполнение всех тестов, выставляется итоговая оценка. Студент может написать финальный тест в следующих случаях, если: - студент хочет повысить балл, - у студента накопленная оценка <4 баллов
Список литературы

Список литературы

Рекомендуемая основная литература

  • The elements of statistical learning : data mining, inference, and prediction, Hastie, T., 2017

Рекомендуемая дополнительная литература

  • Вероятностное машинное обучение : введение, Мэрфи, К. П., 2023

Авторы

  • Кантонистова Елена Олеговна
  • Боднарук Иван Иванович