Бакалавриат
2023/2024
Прикладные методы линейной алгебры
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс по выбору (Программная инженерия)
Направление:
09.03.04. Программная инженерия
Кто читает:
Департамент математики
Где читается:
Факультет компьютерных наук
Когда читается:
3-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Пионтковский Дмитрий Игоревич
Язык:
русский
Кредиты:
5
Контактные часы:
60
Программа дисциплины
Аннотация
В курсе рассматриваются разделы линейной алгебры, находящиеяся за пределами стандартного курса первого года обучения и чрезвычайно важные для приложений. Здесь имеются в виду, главным образом, приложения к анализу данных, а также к статистике и экономике. Курс начнется с обращения прямоугольных матриц, т.е. с понятия псевдообратной матрицы (в ее связи с моделью линейной регрессии). Мы обсудим, в числе прочего, иетеративные методы (и их использование в моделях случайного блуждания на графах, которые применяются в задачах инернет-поиска со времени создания алгоритма PageRank), матричные разложения, методы уменьшения размерности (и их связь с некоторыми алгоритмами сжатия отображений), а также теорию матричных норм и теорию возмущений (с приложениями к оценкам погрешностей матричных вычислений). Курс также включает символьные методы решения систем алгебраических уравнений, задачи аппроксимации, многочлены Чебышева, функции от матриц и др. Студенты также приглашаются сделать собственные доклады по дополнительным разделам прикладной и теоретической линейной алгебры.
Цель освоения дисциплины
- Цель курса -- дать теоретическое основание и практические навыки решения задач линейной алгебры, возникающих в компьютерных науках, анализе данных, машинном обучении и в экономических моделях. Курс покрывает ряд разделов матричного анализа, вычислительных методов линейной алгебры, а также некоторые элементы функционального анализа и математической статистики. Основные алгоритмы, обсуждаемые в рамках курса, составляют неотъемлемую часть современного машинного обучения и анализа данных.
Планируемые результаты обучения
- Знать основные утверждения и теоремы курса
- Иметь навыки построения приближений, аппроксимаций и приближенного решения линейных систем
- Уметь решать задачи линейной алгебры, перечисленные в программе курса
Содержание учебной дисциплины
- Псевдообратная матрица и метод наименьших квадратов
- Полиномиальная интерполяция
- Метрики и нормы. Матричные нормы
- Элементы теории возмущений
- Аппроксимация функций многочленами
- Итеративные методы
- Функции от матриц
Промежуточная аттестация
- 2023/2024 2nd moduleMIN(10; (КР1+КР2)/2 + Bonus), где Bonus -- оценка за возможный проект и его устную презентацию, а также за исключительную активность на семинарах.
Список литературы
Рекомендуемая основная литература
- Линейная алгебра: теория и прикладные аспекты: Учебное пособие / Г.С. Шевцов. - 3-e изд., испр. и доп. - М.: Магистр: НИЦ ИНФРА-М, 2014. - 544 с.: 60x90 1/16. (переплет) ISBN 978-5-9776-0258-7 - Режим доступа: http://znanium.com/catalog/product/438021
Рекомендуемая дополнительная литература
- Fuad Aleskerov, Hasan Ersel, & Dmitri Piontkovski. (2011). Linear Algebra for Economists. Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.spr.sptbec.978.3.642.20570.5