Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2023/2024

Введение в римановы поверхности

Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6
Контактные часы: 72

Course Syllabus

Abstract

The aim of the course is to demonstrate how some of the key ideas of algebraic geometry work, using the approach that does not require a hard technical introduction. With this aim in mind, the course is mainly concentrated on compact Riemann surfaces. Assuming Riemann's existing theorem without proof (in the form that any compact Riemann surfacecan be represented as a ramified covering of the extended complex plane corrseponding to an algebraic equation), we prove Riemann——Roch theorem using adèles (after André Weil) and give some basic examples and results from the theory of algebraic curves.